Difference between revisions of "Dirichlet series"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Fixing some tex encoding) |
||
Line 1: | Line 1: | ||
− | |||
d0329201.png | d0329201.png | ||
$#A+1 = 131 n = 0 | $#A+1 = 131 n = 0 | ||
$#C+1 = 131 : ~/encyclopedia/old_files/data/D032/D.0302920 Dirichlet series | $#C+1 = 131 : ~/encyclopedia/old_files/data/D032/D.0302920 Dirichlet series | ||
− | |||
− | |||
− | |||
− | |||
− | + | ''(Automatically converted into $\TeX$. Above some diagnostics.)'' | |
+ | |||
{{TEX|done}} | {{TEX|done}} | ||
Line 14: | Line 10: | ||
$$ \tag{1 } | $$ \tag{1 } | ||
− | \sum _ { n= } | + | \sum _ { n=1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } , |
$$ | $$ | ||
Line 25: | Line 21: | ||
$$ | $$ | ||
− | \sum _ { n= } | + | \sum _ { n=1 } ^ \infty |
\frac{a _ {n} }{n ^ {s} } | \frac{a _ {n} }{n ^ {s} } | ||
. | . | ||
Line 33: | Line 29: | ||
$$ | $$ | ||
− | \sum _ { n= } | + | \sum _ { n=1 } ^ \infty |
\frac{1}{n ^ {s} } | \frac{1}{n ^ {s} } | ||
Line 42: | Line 38: | ||
$$ | $$ | ||
− | L ( s) = \sum _ { n= } | + | L (s) = \sum _ { n=1 } ^ \infty |
− | \frac{\chi ( n) }{n ^ {s} } | + | \frac{\chi (n) }{n ^ {s} } |
, | , | ||
$$ | $$ | ||
− | where $ \chi ( n) $ | + | where $ \chi (n) $ |
is a function, known as a [[Dirichlet character|Dirichlet character]], were studied by P.G.L. Dirichlet (cf. [[Dirichlet L-function|Dirichlet $ L $- | is a function, known as a [[Dirichlet character|Dirichlet character]], were studied by P.G.L. Dirichlet (cf. [[Dirichlet L-function|Dirichlet $ L $- | ||
function]]). Series (1) with arbitrary exponents $ \lambda _ {n} $ | function]]). Series (1) with arbitrary exponents $ \lambda _ {n} $ | ||
Line 72: | Line 68: | ||
$$ | $$ | ||
− | and there exist Dirichlet series for which $ a- c = d $. | + | and there exist Dirichlet series for which $ a-c = d $. |
− | If $ d= 0 $, | + | If $ d=0 $, |
the abscissa of convergence (abscissa of absolute convergence) is computed by the formula | the abscissa of convergence (abscissa of absolute convergence) is computed by the formula | ||
Line 82: | Line 78: | ||
$$ | $$ | ||
− | which is the analogue of the Cauchy–Hadamard formula. The case $ d> 0 $ | + | which is the analogue of the Cauchy–Hadamard formula. The case $ d>0 $ |
is more complicated: If the magnitude | is more complicated: If the magnitude | ||
Line 89: | Line 85: | ||
\frac{1}{\lambda _ {n} } | \frac{1}{\lambda _ {n} } | ||
− | \mathop{\rm ln} \left | \sum _ { i= } | + | \mathop{\rm ln} \left | \sum _ { i=1 } ^ { n } a _ {i} \right | |
$$ | $$ | ||
Line 95: | Line 91: | ||
if $ \beta \leq 0 $ | if $ \beta \leq 0 $ | ||
and the series (1) diverges at the point $ s = 0 $, | and the series (1) diverges at the point $ s = 0 $, | ||
− | then $ c= 0 $; | + | then $ c=0 $; |
if $ \beta \leq 0 $ | if $ \beta \leq 0 $ | ||
and the series (1) converges at the point $ s = 0 $, | and the series (1) converges at the point $ s = 0 $, | ||
Line 104: | Line 100: | ||
\frac{1}{\lambda _ {n} } | \frac{1}{\lambda _ {n} } | ||
− | \mathop{\rm ln} \left | \sum _ { i= } | + | \mathop{\rm ln} \left | \sum _ { i=1 } ^ \infty a _ {i} \right | . |
$$ | $$ | ||
− | The sum of the series, $ F ( s) $, | + | The sum of the series, $ F (s) $, |
is an analytic function in the half-plane of convergence. If $ \sigma \rightarrow + \infty $, | is an analytic function in the half-plane of convergence. If $ \sigma \rightarrow + \infty $, | ||
the function $ F ( \sigma ) $ | the function $ F ( \sigma ) $ | ||
Line 113: | Line 109: | ||
if $ a _ {1} \neq 0 $). | if $ a _ {1} \neq 0 $). | ||
If the sum of the series is zero, then all coefficients of the series are zero. The maximal half-plane $ \sigma > h $ | If the sum of the series is zero, then all coefficients of the series are zero. The maximal half-plane $ \sigma > h $ | ||
− | in which $ F ( s) $ | + | in which $ F (s) $ |
− | is an analytic function is said to be the half-plane of holomorphy of the function $ F ( s) $, | + | is an analytic function is said to be the half-plane of holomorphy of the function $ F (s) $, |
the straight line $ \sigma = h $ | the straight line $ \sigma = h $ | ||
is known as the axis of holomorphy and the number $ h $ | is known as the axis of holomorphy and the number $ h $ | ||
− | is called the abscissa of holomorphy. The inequality $ h\leq | + | is called the abscissa of holomorphy. The inequality $ h\leq c $ |
− | is true, and cases when $ h< c $ | + | is true, and cases when $ h<c $ |
are possible. Let $ q $ | are possible. Let $ q $ | ||
be the greatest lower bound of the numbers $ \beta $ | be the greatest lower bound of the numbers $ \beta $ | ||
− | for which $ F ( s) $ | + | for which $ F (s) $ |
is bounded in modulus in the half-plane $ \sigma > \beta $( | is bounded in modulus in the half-plane $ \sigma > \beta $( | ||
$ q \leq a $). | $ q \leq a $). | ||
Line 129: | Line 125: | ||
a _ {n} = \lim\limits _ {T \rightarrow \infty } | a _ {n} = \lim\limits _ {T \rightarrow \infty } | ||
\frac{1}{2T} | \frac{1}{2T} | ||
− | \int\limits _ { p- } | + | \int\limits _ { p-iT } ^ { p+iT } F (s) e ^ {\lambda _ {n} s } ds,\ n=1, 2 \dots p>q, |
$$ | $$ | ||
Line 146: | Line 142: | ||
The sum of a Dirichlet series cannot be an arbitrary analytic function in some half-plane $ \sigma > h $; | The sum of a Dirichlet series cannot be an arbitrary analytic function in some half-plane $ \sigma > h $; | ||
it must, for example, tend to zero if $ \sigma \rightarrow + \infty $. | it must, for example, tend to zero if $ \sigma \rightarrow + \infty $. | ||
− | However, the following holds: Whatever the analytic function $ \phi ( s) $ | + | However, the following holds: Whatever the analytic function $ \phi (s) $ |
in the half-plane $ \sigma > h $, | in the half-plane $ \sigma > h $, | ||
− | it is possible to find a Dirichlet series (1) such that its sum $ F ( s) $ | + | it is possible to find a Dirichlet series (1) such that its sum $ F (s) $ |
− | will differ from $ \phi ( s) $ | + | will differ from $ \phi (s) $ |
by an entire function. | by an entire function. | ||
Line 179: | Line 175: | ||
The value of $ \delta $ | The value of $ \delta $ | ||
may be arbitrary in $ [ 0 , \infty ] $; | may be arbitrary in $ [ 0 , \infty ] $; | ||
− | in particular, if $ \lambda _ {n+} | + | in particular, if $ \lambda _ {n+1} - \lambda _ {n} \geq q > 0 $, |
$ n = 1 , 2 \dots $ | $ n = 1 , 2 \dots $ | ||
then $ \delta = 0 $. | then $ \delta = 0 $. | ||
Line 185: | Line 181: | ||
the sum of the series has at least one singular point. | the sum of the series has at least one singular point. | ||
− | If the Dirichlet series (1) converges in the entire plane, its sum $ F ( s) $ | + | If the Dirichlet series (1) converges in the entire plane, its sum $ F (s) $ |
is an entire function. Let | is an entire function. Let | ||
Line 195: | Line 191: | ||
$$ | $$ | ||
− | then the R-order of the entire function $ F ( s) $( | + | then the R-order of the entire function $ F (s) $( |
Ritt order) is the magnitude | Ritt order) is the magnitude | ||
Line 216: | Line 212: | ||
$$ | $$ | ||
− | One can also introduce the concept of the R-type of a function $ F ( s) $. | + | One can also introduce the concept of the R-type of a function $ F (s) $. |
If | If | ||
Line 227: | Line 223: | ||
$$ | $$ | ||
− | and if the function $ F ( s) $ | + | and if the function $ F (s) $ |
is bounded in modulus in a horizontal strip wider than $ 2 \pi \tau $, | is bounded in modulus in a horizontal strip wider than $ 2 \pi \tau $, | ||
− | then $ F ( s) \equiv 0 $( | + | then $ F (s) \equiv 0 $( |
the analogue of one of the [[Liouville theorems|Liouville theorems]]). | the analogue of one of the [[Liouville theorems|Liouville theorems]]). | ||
Line 236: | Line 232: | ||
$$ \tag{2 } | $$ \tag{2 } | ||
− | F ( s) = \sum _ {n = 1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } | + | F (s) = \sum _ {n = 1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } |
$$ | $$ | ||
Line 249: | Line 245: | ||
$$ | $$ | ||
− | the open domains of convergence and absolute convergence coincide. The sum $ F ( s) $ | + | the open domains of convergence and absolute convergence coincide. The sum $ F (s) $ |
− | of the series (2) is an analytic function in the domain of convergence. The domain of holomorphy of $ F ( s) $ | + | of the series (2) is an analytic function in the domain of convergence. The domain of holomorphy of $ F (s) $ |
is, generally speaking, wider than the domain of convergence of the Dirichlet series (2). If | is, generally speaking, wider than the domain of convergence of the Dirichlet series (2). If | ||
Line 273: | Line 269: | ||
be an entire function of exponential type which has simple zeros at the points $ \lambda _ {n} $, | be an entire function of exponential type which has simple zeros at the points $ \lambda _ {n} $, | ||
$ n \geq 1 $; | $ n \geq 1 $; | ||
− | let $ \gamma ( t) $ | + | let $ \gamma (t) $ |
be the Borel-associated function to $ L ( \lambda ) $( | be the Borel-associated function to $ L ( \lambda ) $( | ||
cf. [[Borel transform|Borel transform]]); let $ \overline{D}\; $ | cf. [[Borel transform|Borel transform]]); let $ \overline{D}\; $ | ||
− | be the smallest closed convex set containing all the singular points of $ \gamma ( t) $, | + | be the smallest closed convex set containing all the singular points of $ \gamma (t) $, |
and let | and let | ||
$$ | $$ | ||
− | \psi _ {n} ( t) = | + | \psi _ {n} (t) = |
\frac{1}{L ^ \prime ( \lambda _ {n} ) } | \frac{1}{L ^ \prime ( \lambda _ {n} ) } | ||
Line 289: | Line 285: | ||
$$ | $$ | ||
− | Then the functions $ \psi _ {n} ( t) $ | + | Then the functions $ \psi _ {n} (t) $ |
are regular outside $ \overline{D}\; $, | are regular outside $ \overline{D}\; $, | ||
$ \psi _ {n} ( \infty ) = 0 $, | $ \psi _ {n} ( \infty ) = 0 $, | ||
Line 297: | Line 293: | ||
\frac{1}{2 \pi i } | \frac{1}{2 \pi i } | ||
− | \int\limits _ { C } e ^ {\lambda _ {m} t } \psi _ {n} ( t) | + | \int\limits _ { C } e ^ {\lambda _ {m} t } \psi _ {n} (t) |
d t = \left \{ | d t = \left \{ | ||
\begin{array}{ll} | \begin{array}{ll} | ||
0 , & m \neq n , \\ | 0 , & m \neq n , \\ | ||
− | 1, & m = n , \\ | + | 1, & m =n , \\ |
\end{array} | \end{array} | ||
Line 308: | Line 304: | ||
where $ C $ | where $ C $ | ||
is a closed contour encircling $ \overline{D}\; $. | is a closed contour encircling $ \overline{D}\; $. | ||
− | If the functions $ \psi _ {n} ( t) $ | + | If the functions $ \psi _ {n} (t) $ |
are continuous up to the boundary of $ \overline{D}\; $, | are continuous up to the boundary of $ \overline{D}\; $, | ||
the boundary $ \partial \overline{D}\; $ | the boundary $ \partial \overline{D}\; $ | ||
may be taken as $ C $. | may be taken as $ C $. | ||
− | To an arbitrary analytic function $ F ( s) $ | + | To an arbitrary analytic function $ F (s) $ |
in $ D $( | in $ D $( | ||
the interior of the domain $ \overline{D}\; $) | the interior of the domain $ \overline{D}\; $) | ||
Line 319: | Line 315: | ||
$$ \tag{3 } | $$ \tag{3 } | ||
− | F ( s) \sim \sum _ {n = 1 } ^ \infty | + | F (s) \sim \sum _ {n = 1 } ^ \infty |
a _ {n} e ^ {\lambda _ {n} s } , | a _ {n} e ^ {\lambda _ {n} s } , | ||
$$ | $$ | ||
Line 326: | Line 322: | ||
a _ {n} = | a _ {n} = | ||
\frac{1}{2 \pi i } | \frac{1}{2 \pi i } | ||
− | \int\limits _ {\partial D | + | \int\limits _ {\partial \overline{D}\; } F (t) \psi _ {n} (t) d t ,\ n \geq 1 . |
− | |||
$$ | $$ | ||
Line 333: | Line 328: | ||
it is possible to construct an entire function $ L ( \lambda ) $ | it is possible to construct an entire function $ L ( \lambda ) $ | ||
with simple zeros $ \lambda _ {1} , \lambda _ {2} \dots $ | with simple zeros $ \lambda _ {1} , \lambda _ {2} \dots $ | ||
− | such that for any function $ F ( s) $ | + | such that for any function $ F (s) $ |
analytic in $ D $ | analytic in $ D $ | ||
and continuous in $ \overline{D}\; $ | and continuous in $ \overline{D}\; $ | ||
the series (3) converges uniformly inside $ D $ | the series (3) converges uniformly inside $ D $ | ||
− | to $ F ( s) $. | + | to $ F (s) $. |
− | For an analytic function $ \phi ( s) $ | + | For an analytic function $ \phi (s) $ |
in $ D $( | in $ D $( | ||
not necessarily continuous in $ \overline{D}\; $) | not necessarily continuous in $ \overline{D}\; $) | ||
Line 347: | Line 342: | ||
$$ | $$ | ||
− | and a function $ F ( s) $ | + | and a function $ F (s) $ |
analytic in $ D $ | analytic in $ D $ | ||
and continuous in $ \overline{D}\; $, | and continuous in $ \overline{D}\; $, | ||
Line 353: | Line 348: | ||
$$ | $$ | ||
− | \phi ( s) = M ( D ) F ( s) = \sum _ {n= 0 } ^ \infty c _ {n} F ^ { ( n) } ( s) . | + | \phi (s) = M ( D ) F (s) = \sum _ {n=0 } ^ \infty c _ {n} F ^ { (n) } (s) . |
$$ | $$ | ||
Line 359: | Line 354: | ||
$$ | $$ | ||
− | \phi ( s) = \sum _ {n = 0 } ^ \infty a _ {n} M ( \lambda _ {n} ) | + | \phi (s) = \sum _ {n = 0 } ^ \infty a _ {n} M ( \lambda _ {n} ) |
e ^ {\lambda _ {n} s } ,\ s \in D . | e ^ {\lambda _ {n} s } ,\ s \in D . | ||
$$ | $$ |
Revision as of 22:06, 30 December 2020
d0329201.png $#A+1 = 131 n = 0 $#C+1 = 131 : ~/encyclopedia/old_files/data/D032/D.0302920 Dirichlet series
(Automatically converted into $\TeX$. Above some diagnostics.)
A series of the form
$$ \tag{1 } \sum _ { n=1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } , $$
where the $ a _ {n} $ are complex coefficients, $ \lambda _ {n} $, $ 0 < | \lambda _ {n} | \uparrow \infty $, are the exponents of the series, and $ s = \sigma + it $ is a complex variable. If $ \lambda _ {n} = \mathop{\rm ln} n $, one obtains the so-called ordinary Dirichlet series
$$ \sum _ { n=1 } ^ \infty \frac{a _ {n} }{n ^ {s} } . $$
The series
$$ \sum _ { n=1 } ^ \infty \frac{1}{n ^ {s} } $$
represents the Riemann zeta-function for $ \sigma > 1 $. The series
$$ L (s) = \sum _ { n=1 } ^ \infty \frac{\chi (n) }{n ^ {s} } , $$
where $ \chi (n) $ is a function, known as a Dirichlet character, were studied by P.G.L. Dirichlet (cf. Dirichlet $ L $- function). Series (1) with arbitrary exponents $ \lambda _ {n} $ are known as general Dirichlet series.
General Dirichlet series with positive exponents.
Let, initially, the $ \lambda _ {n} $ be positive numbers. The analogue of the Abel theorem for power series is then valid: If the series (1) converges at a point $ s _ {0} = \sigma _ {0} + it _ {0} $, it will converge in the half-plane $ \sigma > \sigma _ {0} $, and it will converge uniformly inside an arbitrary angle $ | \mathop{\rm arg} ( s - s _ {0} ) | < \phi _ {0} < \pi / 2 $. The open domain of convergence of the series is some half-plane $ \sigma > c $. The number $ c $ is said to be the abscissa of convergence of the Dirichlet series; the straight line $ \sigma = c $ is said to be the axis of convergence of the series, and the half-plane $ \sigma > c $ is said to be the half-plane of convergence of the series. As well as the half-plane of convergence one also considers the half-plane of absolute convergence of the Dirichlet series, $ \sigma > a $: The open domain in which the series converges absolutely (here $ a $ is the abscissa of absolute convergence). In general, the abscissas of convergence and of absolute convergence are different. But always:
$$ 0 \leq a - c \leq d ,\ \textrm{ where } d = \overline{\lim\limits}\; _ {n\rightarrow \infty } \ \frac{ \mathop{\rm ln} n }{\lambda _ {n} } , $$
and there exist Dirichlet series for which $ a-c = d $. If $ d=0 $, the abscissa of convergence (abscissa of absolute convergence) is computed by the formula
$$ a = c = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{ \mathop{\rm ln} | a _ {n} | }{\lambda _ {n} } , $$
which is the analogue of the Cauchy–Hadamard formula. The case $ d>0 $ is more complicated: If the magnitude
$$ \beta = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{1}{\lambda _ {n} } \mathop{\rm ln} \left | \sum _ { i=1 } ^ { n } a _ {i} \right | $$
is positive, then $ c = \beta $; if $ \beta \leq 0 $ and the series (1) diverges at the point $ s = 0 $, then $ c=0 $; if $ \beta \leq 0 $ and the series (1) converges at the point $ s = 0 $, then
$$ c = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{1}{\lambda _ {n} } \mathop{\rm ln} \left | \sum _ { i=1 } ^ \infty a _ {i} \right | . $$
The sum of the series, $ F (s) $, is an analytic function in the half-plane of convergence. If $ \sigma \rightarrow + \infty $, the function $ F ( \sigma ) $ asymptotically behaves as the first term of the series, $ a _ {1} e ^ {- \lambda _ {1} \sigma } $( if $ a _ {1} \neq 0 $). If the sum of the series is zero, then all coefficients of the series are zero. The maximal half-plane $ \sigma > h $ in which $ F (s) $ is an analytic function is said to be the half-plane of holomorphy of the function $ F (s) $, the straight line $ \sigma = h $ is known as the axis of holomorphy and the number $ h $ is called the abscissa of holomorphy. The inequality $ h\leq c $ is true, and cases when $ h<c $ are possible. Let $ q $ be the greatest lower bound of the numbers $ \beta $ for which $ F (s) $ is bounded in modulus in the half-plane $ \sigma > \beta $( $ q \leq a $). The formula
$$ a _ {n} = \lim\limits _ {T \rightarrow \infty } \frac{1}{2T} \int\limits _ { p-iT } ^ { p+iT } F (s) e ^ {\lambda _ {n} s } ds,\ n=1, 2 \dots p>q, $$
is valid, and entails the inequalities
$$ | a _ {n} | \leq \frac{M ( \sigma ) }{e ^ {- \lambda _ {n} \sigma } } ,\ M ( \sigma ) = \sup _ {- \infty < t < \infty } | F ( \sigma + it ) | , $$
which are analogues of the Cauchy inequalities for the coefficients of a power series.
The sum of a Dirichlet series cannot be an arbitrary analytic function in some half-plane $ \sigma > h $; it must, for example, tend to zero if $ \sigma \rightarrow + \infty $. However, the following holds: Whatever the analytic function $ \phi (s) $ in the half-plane $ \sigma > h $, it is possible to find a Dirichlet series (1) such that its sum $ F (s) $ will differ from $ \phi (s) $ by an entire function.
If the sequence of exponents has a density
$$ \tau = \lim\limits _ {n \rightarrow \infty } \ \frac{n}{\lambda _ {n} } < \infty , $$
the difference between the abscissa of convergence (the abscissas of convergence and of absolute convergence coincide) and the abscissa of holomorphy does not exceed
$$ \delta = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{1}{\lambda _ {n} } \mathop{\rm ln} \left | \frac{1}{L ^ \prime ( \lambda _ {n} ) } \right | ,\ \ L ( \lambda ) = \prod _ {n = 1 } ^ \infty \left ( 1 - \frac{\lambda ^ {2} }{\lambda _ {n} ^ {2} } \right ) , $$
and there exist series for which this difference equals $ \delta $. The value of $ \delta $ may be arbitrary in $ [ 0 , \infty ] $; in particular, if $ \lambda _ {n+1} - \lambda _ {n} \geq q > 0 $, $ n = 1 , 2 \dots $ then $ \delta = 0 $. The axis of holomorphy has the following property: On any of its segments of length $ 2 \pi \tau $ the sum of the series has at least one singular point.
If the Dirichlet series (1) converges in the entire plane, its sum $ F (s) $ is an entire function. Let
$$ \overline{\lim\limits}\; _ {n \rightarrow \infty } \ \frac{ \mathop{\rm ln} n }{\lambda _ {n} } < \infty ; $$
then the R-order of the entire function $ F (s) $( Ritt order) is the magnitude
$$ \rho = \overline{\lim\limits}\; _ {\sigma \rightarrow - \infty } \ \frac{ { \mathop{\rm ln} \mathop{\rm ln} } M ( \sigma ) }{- \sigma } . $$
Its expression in terms of the coefficients of the series is
$$ - \frac{1} \rho = \overline{\lim\limits}\; _ {n \rightarrow \infty } \ \frac{ \mathop{\rm ln} | a _ {n} | }{\lambda _ {n} \mathop{\rm ln} \lambda _ {n} } . $$
One can also introduce the concept of the R-type of a function $ F (s) $.
If
$$ \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{n}{\lambda _ {n} } = \ \tau < \infty $$
and if the function $ F (s) $ is bounded in modulus in a horizontal strip wider than $ 2 \pi \tau $, then $ F (s) \equiv 0 $( the analogue of one of the Liouville theorems).
Dirichlet series with complex exponents.
For a Dirichlet series
$$ \tag{2 } F (s) = \sum _ {n = 1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } $$
with complex exponents $ 0 < | \lambda _ {1} | \leq | \lambda _ {2} | \leq \dots $, the open domain of absolute convergence is convex. If
$$ \lim\limits _ {n \rightarrow \infty } \ \frac{ \mathop{\rm ln} n }{\lambda _ {n} } = 0 , $$
the open domains of convergence and absolute convergence coincide. The sum $ F (s) $ of the series (2) is an analytic function in the domain of convergence. The domain of holomorphy of $ F (s) $ is, generally speaking, wider than the domain of convergence of the Dirichlet series (2). If
$$ \lim\limits _ {n \rightarrow \infty } \frac{n}{\lambda _ {n} } = 0, $$
then the domain of holomorphy is convex.
Let
$$ \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{n}{| \lambda _ {n} | } = \tau < \infty ; $$
let $ L ( \lambda ) $ be an entire function of exponential type which has simple zeros at the points $ \lambda _ {n} $, $ n \geq 1 $; let $ \gamma (t) $ be the Borel-associated function to $ L ( \lambda ) $( cf. Borel transform); let $ \overline{D}\; $ be the smallest closed convex set containing all the singular points of $ \gamma (t) $, and let
$$ \psi _ {n} (t) = \frac{1}{L ^ \prime ( \lambda _ {n} ) } \int\limits _ { 0 } ^ \infty \frac{L ( \lambda ) }{\lambda - \lambda _ {n} } e ^ {- \lambda t } d \lambda ,\ n = 1 , 2 , . . . . $$
Then the functions $ \psi _ {n} (t) $ are regular outside $ \overline{D}\; $, $ \psi _ {n} ( \infty ) = 0 $, and they are bi-orthogonal to the system $ \{ e ^ {\lambda _ {n} s } \} $:
$$ \frac{1}{2 \pi i } \int\limits _ { C } e ^ {\lambda _ {m} t } \psi _ {n} (t) d t = \left \{ \begin{array}{ll} 0 , & m \neq n , \\ 1, & m =n , \\ \end{array} \right .$$
where $ C $ is a closed contour encircling $ \overline{D}\; $. If the functions $ \psi _ {n} (t) $ are continuous up to the boundary of $ \overline{D}\; $, the boundary $ \partial \overline{D}\; $ may be taken as $ C $. To an arbitrary analytic function $ F (s) $ in $ D $( the interior of the domain $ \overline{D}\; $) which is continuous in $ \overline{D}\; $ one assigns a series:
$$ \tag{3 } F (s) \sim \sum _ {n = 1 } ^ \infty a _ {n} e ^ {\lambda _ {n} s } , $$
$$ a _ {n} = \frac{1}{2 \pi i } \int\limits _ {\partial \overline{D}\; } F (t) \psi _ {n} (t) d t ,\ n \geq 1 . $$
For a given bounded convex domain $ \overline{D}\; $ it is possible to construct an entire function $ L ( \lambda ) $ with simple zeros $ \lambda _ {1} , \lambda _ {2} \dots $ such that for any function $ F (s) $ analytic in $ D $ and continuous in $ \overline{D}\; $ the series (3) converges uniformly inside $ D $ to $ F (s) $. For an analytic function $ \phi (s) $ in $ D $( not necessarily continuous in $ \overline{D}\; $) it is possible to find an entire function of exponential type zero,
$$ M ( \lambda ) = \sum _ {n = 0 } ^ \infty c _ {n} \lambda ^ {n} , $$
and a function $ F (s) $ analytic in $ D $ and continuous in $ \overline{D}\; $, such that
$$ \phi (s) = M ( D ) F (s) = \sum _ {n=0 } ^ \infty c _ {n} F ^ { (n) } (s) . $$
Then
$$ \phi (s) = \sum _ {n = 0 } ^ \infty a _ {n} M ( \lambda _ {n} ) e ^ {\lambda _ {n} s } ,\ s \in D . $$
The representation of arbitrary analytic functions by Dirichlet series in a domain $ D $ was also established in cases when $ D $ is the entire plane or an infinite convex polygonal domain (bounded by a finite number of rectilinear segments).
References
[1] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
[2] | S. Mandelbrojt, "Dirichlet series, principles and methods" , Reidel (1972) |
Comments
References
[a1] | G.H. Hardy, M. Riesz, "The general theory of Dirichlet series" , Cambridge Univ. Press (1915) Zbl 45.0387.03 |
Dirichlet series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_series&oldid=51116