Difference between revisions of "Wallis formula"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 28: | Line 28: | ||
\frac{4}{5} | \frac{4}{5} | ||
} \right ) \dots \left ( { | } \right ) \dots \left ( { | ||
− | \frac{2k}{2k-} | + | \frac{2k}{2k-1} |
− | + | } \cdot | |
{ | { | ||
− | \frac{2k}{2k+} | + | \frac{2k}{2k+1} |
− | + | } \right ) \dots = | |
$$ | $$ | ||
$$ | $$ | ||
= \ | = \ | ||
− | \lim\limits _ {m \rightarrow \infty } \prod _ { k= } | + | \lim\limits _ {m \rightarrow \infty } \prod _ { k=1 } ^ { m } |
\frac{( 2k) ^ {2} }{( 2k- 1)( 2k+ 1) } | \frac{( 2k) ^ {2} }{( 2k- 1)( 2k+ 1) } | ||
. | . | ||
Line 61: | Line 61: | ||
$$ | $$ | ||
− | \sin z = z \prod _ { n= } | + | \sin z = z \prod _ { n=1 } ^ \infty \left ( 1 - \frac{z ^ {2} }{n ^ {2} \pi ^ {2} } \right ) |
− | \frac{z ^ {2} }{n ^ {2} | ||
− | \pi ^ {2} } | ||
− | |||
$$ | $$ | ||
− | + | with $z = \pi /2 $. | |
− | with $ | ||
It can also be obtained by expressing $ \int _ {0} ^ {\pi /2 } \sin ^ {2m} x dx $ | It can also be obtained by expressing $ \int _ {0} ^ {\pi /2 } \sin ^ {2m} x dx $ | ||
− | and $ \int _ {0} ^ {\pi /2 } \sin ^ {2m+} | + | and $ \int _ {0} ^ {\pi /2 } \sin ^ {2m+1} x dx $ in terms of $ m $, and by showing that |
− | in terms of $ m $, | ||
− | and by showing that | ||
$$ | $$ | ||
− | \frac{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m} x dx }{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m+} | + | \frac{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m} x dx }{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m+1} x dx } |
\rightarrow 1 \ ( m\rightarrow \infty ). | \rightarrow 1 \ ( m\rightarrow \infty ). | ||
$$ | $$ | ||
− | Formula (2) can be derived from (1) by multiplying the numerator and the denominator of $ \prod _ {k=} | + | Formula (2) can be derived from (1) by multiplying the numerator and the denominator of $ \prod _ {k=1} ^ {m} ( 2k) ^ {2} / ( 2k- 1)( 2k+ 1) $ |
by $ 2 ^ {2} \cdot 4 ^ {2} \dots ( 2m) ^ {2} $. | by $ 2 ^ {2} \cdot 4 ^ {2} \dots ( 2m) ^ {2} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Calculus" , '''2''' , Blaisdell (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.H. Edwards jr., "The historical development of the calculus" , Springer (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lax, S. Burstein, A. Lax, "Calculus with applications and computing" , '''1''' , Springer (1976)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.J. Struik (ed.) , ''A source book in mathematics: 1200–1800'' , Harvard Univ. Press (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Calculus" , '''2''' , Blaisdell (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.H. Edwards jr., "The historical development of the calculus" , Springer (1979)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lax, S. Burstein, A. Lax, "Calculus with applications and computing" , '''1''' , Springer (1976)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.J. Struik (ed.) , ''A source book in mathematics: 1200–1800'' , Harvard Univ. Press (1986)</TD></TR></table> |
Latest revision as of 21:31, 29 December 2020
A formula which expresses the number $ \pi /2 $
as an infinite product:
$$ \tag{1 } { \frac \pi {2} } = \ \left ( { \frac{2}{1} } \cdot { \frac{2}{3} } \right ) \left ( { \frac{4}{3} } \cdot { \frac{4}{5} } \right ) \dots \left ( { \frac{2k}{2k-1} } \cdot { \frac{2k}{2k+1} } \right ) \dots = $$
$$ = \ \lim\limits _ {m \rightarrow \infty } \prod _ { k=1 } ^ { m } \frac{( 2k) ^ {2} }{( 2k- 1)( 2k+ 1) } . $$
There exist other variants of this formula, e.g.:
$$ \tag{2 } \sqrt \pi = \ \lim\limits _ {m \rightarrow \infty } \ \frac{( m!) ^ {2} \cdot 2 ^ {2m} }{( 2m)! \sqrt m } . $$
Formula (1) was first employed by J. Wallis [1] in his calculation of the area of a disc; it is one of the earliest examples of an infinite product.
References
[1] | J. Wallis, "Arithmetica infinitorum" , Oxford (1656) |
Comments
Formula (1) is a direct consequence of Euler's product formula
$$ \sin z = z \prod _ { n=1 } ^ \infty \left ( 1 - \frac{z ^ {2} }{n ^ {2} \pi ^ {2} } \right ) $$ with $z = \pi /2 $.
It can also be obtained by expressing $ \int _ {0} ^ {\pi /2 } \sin ^ {2m} x dx $ and $ \int _ {0} ^ {\pi /2 } \sin ^ {2m+1} x dx $ in terms of $ m $, and by showing that
$$ \frac{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m} x dx }{\int\limits _ { 0 } ^ { \pi /2 } \sin ^ {2m+1} x dx } \rightarrow 1 \ ( m\rightarrow \infty ). $$
Formula (2) can be derived from (1) by multiplying the numerator and the denominator of $ \prod _ {k=1} ^ {m} ( 2k) ^ {2} / ( 2k- 1)( 2k+ 1) $ by $ 2 ^ {2} \cdot 4 ^ {2} \dots ( 2m) ^ {2} $.
References
[a1] | T.M. Apostol, "Calculus" , 2 , Blaisdell (1964) |
[a2] | C.H. Edwards jr., "The historical development of the calculus" , Springer (1979) |
[a3] | P. Lax, S. Burstein, A. Lax, "Calculus with applications and computing" , 1 , Springer (1976) |
[a4] | D.J. Struik (ed.) , A source book in mathematics: 1200–1800 , Harvard Univ. Press (1986) |
Wallis formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wallis_formula&oldid=51104