Difference between revisions of "Freudenthal-Kantor triple system"
m (link) |
m (AUTOMATIC EDIT (latexlist): Replaced 57 formulas out of 57 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
+ | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
+ | |||
+ | Out of 57 formulas, 57 were replaced by TEX code.--> | ||
+ | |||
+ | {{TEX|semi-auto}}{{TEX|done}} | ||
A [[triple system]] considered for constructing all simple Lie algebras (cf. [[Lie algebra|Lie algebra]]), and introduced as an algebraic system which is a generalization both of the algebraic systems appearing in the metasymplectic geometry developed by H. Freudenthal and of a generalized [[Jordan triple system|Jordan triple system]] of second order developed by I.L. Kantor. | A [[triple system]] considered for constructing all simple Lie algebras (cf. [[Lie algebra|Lie algebra]]), and introduced as an algebraic system which is a generalization both of the algebraic systems appearing in the metasymplectic geometry developed by H. Freudenthal and of a generalized [[Jordan triple system|Jordan triple system]] of second order developed by I.L. Kantor. | ||
− | Recall that a triple system is a [[Vector space|vector space]] | + | Recall that a triple system is a [[Vector space|vector space]] $V$ over a [[Field|field]] $\Phi$ together with a $\Phi$-trilinear mapping $V \times V \times V \rightarrow V$. |
− | For | + | For $ \epsilon = \pm 1$, a vector space $U ( \varepsilon )$ over a field $\Phi$ with the trilinear product $\langle x y z \rangle$ is called a Freudenthal–Kantor triple system if |
− | + | \begin{equation} \tag{a1} \langle a b \langle c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle, \end{equation} | |
− | + | \begin{equation} \tag{a2} K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0, \end{equation} | |
− | where | + | where $L ( a , b ) c = \langle a b c \rangle$ and $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$. |
− | In particular, a Freudenthal–Kantor triple system | + | In particular, a Freudenthal–Kantor triple system $U ( \varepsilon )$ is said to be balanced if there exists a bilinear form $\langle \, .\, ,\, . \, \rangle$ such that $K ( a , b ) = \langle a , b \rangle \operatorname{Id}$, for all $a,b \in U ( \varepsilon )$. |
This balancing property is closely related to metasymplectic geometry. | This balancing property is closely related to metasymplectic geometry. | ||
− | Note that if | + | Note that if $\varepsilon = - 1$ and $K ( a , b ) \equiv 0$ (identically), then the Freudenthal–Kantor triple system reduces to a Jordan triple system. |
As the notion of a Freudenthal–Kantor triple system includes the notions of a generalized Jordan triple system of second order, a structurable algebra, and an [[Allison–Hein triple system|Allison–Hein triple system]], it is useful in obtaining all Lie algebras, without the use of root systems and Cartan matrices. | As the notion of a Freudenthal–Kantor triple system includes the notions of a generalized Jordan triple system of second order, a structurable algebra, and an [[Allison–Hein triple system|Allison–Hein triple system]], it is useful in obtaining all Lie algebras, without the use of root systems and Cartan matrices. | ||
− | Let | + | Let $V$ be a vector space with a bilinear form $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$. Then $V$ is a Freudenthal–Kantor triple system with respect to the triple product $\langle x y z \rangle : = \langle y , z \rangle x$. In particular, it is important that the linear span $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ of the set $K ( a , b )$ makes a Jordan triple system of $( \text { End } U ( \varepsilon ) ) ^ { + }$ with respect to the triple product $\{ A B C \} : = 1 / 2 ( A B C + C B A )$. |
− | Let | + | Let $U ( \varepsilon )$ be a Freudenthal–Kantor triple system. The vector space $U ( \varepsilon ) \oplus U ( \varepsilon )$ becomes a [[Lie triple system|Lie triple system]] with respect to the triple product defined by |
− | + | \begin{equation*} \left[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) \right] : = \end{equation*} | |
− | + | \begin{equation*} := \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right). \end{equation*} | |
− | Using this, one can obtain the Lie triple system | + | Using this, one can obtain the Lie triple system $U ( \varepsilon ) \oplus U ( \varepsilon )$ associated with $U ( \varepsilon )$; it is denoted be $T ( \varepsilon )$. |
− | Using the concept of the standard embedding Lie algebra | + | Using the concept of the standard embedding Lie algebra $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ associated with a Lie triple system $T ( \varepsilon )$, one can obtain the construction of $L ( \varepsilon )$ associated with a Freudenthal–Kantor triple system $U ( \varepsilon )$. In fact, put |
− | + | $L_{2}$ equal to the linear span of the endomorphisms | |
− | + | \begin{equation*} \left( \begin{array} { c c } { 0 } & { K ( a , b ) } \\ { 0 } & { 0 } \end{array} \right); \end{equation*} | |
− | + | $L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$; | |
− | + | $L_{ - 1} : = ( 0 ) \oplus U ( \varepsilon )$; | |
− | + | $L_0$ equal to the linear span of the endomorphisms | |
− | + | \begin{equation*} \left( \begin{array} { c c } { L ( a , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , a ) } \end{array} \right); \end{equation*} | |
− | + | $L_{ - 2}$ equal to the linear span of the endomorphisms | |
− | + | \begin{equation*} \left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right). \end{equation*} | |
Then one obtains the decomposition | Then one obtains the decomposition | ||
− | + | \begin{equation*} L ( \varepsilon ) = L _ { - 2 } \bigoplus L _ { - 1 } \bigoplus L _ { 0 } \bigoplus L _ { 1 } \bigoplus L _ { 2 }, \end{equation*} | |
and, more precisely, | and, more precisely, | ||
− | + | \begin{equation*} \left[ \left( \begin{array} { c c } { \text{Id} } & { 0 } \\ { 0 } & { - \text{Id} } \end{array} \right) , L _ { i } \right] = i L _ { i } ( - 2 \leq i \leq 2 ). \end{equation*} | |
These results imply the dimensional formula | These results imply the dimensional formula | ||
− | + | \begin{equation*} \operatorname { dim } _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )+ \end{equation*} | |
− | + | \begin{equation*} + \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } = \end{equation*} | |
− | + | \begin{equation*} = \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon ). \end{equation*} | |
− | This algebra | + | This algebra $L ( \varepsilon )$ is called the Lie algebra associated with $U ( \varepsilon )$. |
The concepts of a triple system and a supertriple system are important in the theory of quarks and Yang–Baxter equations. | The concepts of a triple system and a supertriple system are important in the theory of quarks and Yang–Baxter equations. | ||
Line 70: | Line 78: | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> H. Freudenthal, "Beziehungen der $E _ { 7 }$ und $E _ { 8 }$ zur Oktavenebene I–II" ''Indag. Math.'' , '''16''' (1954) pp. 218–230; 363–386</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> N. Kamiya, "The construction of all simple Lie algebras over $C$ from balanced Freudenthal–Kantor triple systems" , ''Contributions to General Algebra'' , '''7''' , Hölder–Pichler–Tempsky, Wien (1991) pp. 205–213</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> N. Kamiya, "On Freudenthal–Kantor triple systems and generalized structurable algebras" , ''Non-Associative Algebra and Its Applications'' , Kluwer Acad. Publ. (1994) pp. 198–203</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> N. Kamiya, S. Okubo, "On $\delta$-Lie supertriple systems associated with $( \varepsilon , \delta )$-Freudenthal–Kantor supertriple systems" ''Proc. Edinburgh Math. Soc.'' , '''43''' (2000) pp. 243–260</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> I.L. Kantor, "Models of exceptional Lie algebras" ''Soviet Math. Dokl.'' , '''14''' (1973) pp. 254–258</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> S. Okubo, "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press (1995)</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> K. Yamaguti, "On the metasymplectic geometry and triple systems" ''Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ.'' , '''306''' (1977) pp. 55–92 (In Japanese)</td></tr></table> |
Revision as of 15:19, 1 July 2020
A triple system considered for constructing all simple Lie algebras (cf. Lie algebra), and introduced as an algebraic system which is a generalization both of the algebraic systems appearing in the metasymplectic geometry developed by H. Freudenthal and of a generalized Jordan triple system of second order developed by I.L. Kantor.
Recall that a triple system is a vector space $V$ over a field $\Phi$ together with a $\Phi$-trilinear mapping $V \times V \times V \rightarrow V$.
For $ \epsilon = \pm 1$, a vector space $U ( \varepsilon )$ over a field $\Phi$ with the trilinear product $\langle x y z \rangle$ is called a Freudenthal–Kantor triple system if
\begin{equation} \tag{a1} \langle a b \langle c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle, \end{equation}
\begin{equation} \tag{a2} K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0, \end{equation}
where $L ( a , b ) c = \langle a b c \rangle$ and $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$.
In particular, a Freudenthal–Kantor triple system $U ( \varepsilon )$ is said to be balanced if there exists a bilinear form $\langle \, .\, ,\, . \, \rangle$ such that $K ( a , b ) = \langle a , b \rangle \operatorname{Id}$, for all $a,b \in U ( \varepsilon )$.
This balancing property is closely related to metasymplectic geometry.
Note that if $\varepsilon = - 1$ and $K ( a , b ) \equiv 0$ (identically), then the Freudenthal–Kantor triple system reduces to a Jordan triple system.
As the notion of a Freudenthal–Kantor triple system includes the notions of a generalized Jordan triple system of second order, a structurable algebra, and an Allison–Hein triple system, it is useful in obtaining all Lie algebras, without the use of root systems and Cartan matrices.
Let $V$ be a vector space with a bilinear form $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$. Then $V$ is a Freudenthal–Kantor triple system with respect to the triple product $\langle x y z \rangle : = \langle y , z \rangle x$. In particular, it is important that the linear span $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ of the set $K ( a , b )$ makes a Jordan triple system of $( \text { End } U ( \varepsilon ) ) ^ { + }$ with respect to the triple product $\{ A B C \} : = 1 / 2 ( A B C + C B A )$.
Let $U ( \varepsilon )$ be a Freudenthal–Kantor triple system. The vector space $U ( \varepsilon ) \oplus U ( \varepsilon )$ becomes a Lie triple system with respect to the triple product defined by
\begin{equation*} \left[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) \right] : = \end{equation*}
\begin{equation*} := \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right). \end{equation*}
Using this, one can obtain the Lie triple system $U ( \varepsilon ) \oplus U ( \varepsilon )$ associated with $U ( \varepsilon )$; it is denoted be $T ( \varepsilon )$.
Using the concept of the standard embedding Lie algebra $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ associated with a Lie triple system $T ( \varepsilon )$, one can obtain the construction of $L ( \varepsilon )$ associated with a Freudenthal–Kantor triple system $U ( \varepsilon )$. In fact, put
$L_{2}$ equal to the linear span of the endomorphisms
\begin{equation*} \left( \begin{array} { c c } { 0 } & { K ( a , b ) } \\ { 0 } & { 0 } \end{array} \right); \end{equation*}
$L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$;
$L_{ - 1} : = ( 0 ) \oplus U ( \varepsilon )$;
$L_0$ equal to the linear span of the endomorphisms
\begin{equation*} \left( \begin{array} { c c } { L ( a , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , a ) } \end{array} \right); \end{equation*}
$L_{ - 2}$ equal to the linear span of the endomorphisms
\begin{equation*} \left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right). \end{equation*}
Then one obtains the decomposition
\begin{equation*} L ( \varepsilon ) = L _ { - 2 } \bigoplus L _ { - 1 } \bigoplus L _ { 0 } \bigoplus L _ { 1 } \bigoplus L _ { 2 }, \end{equation*}
and, more precisely,
\begin{equation*} \left[ \left( \begin{array} { c c } { \text{Id} } & { 0 } \\ { 0 } & { - \text{Id} } \end{array} \right) , L _ { i } \right] = i L _ { i } ( - 2 \leq i \leq 2 ). \end{equation*}
These results imply the dimensional formula
\begin{equation*} \operatorname { dim } _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )+ \end{equation*}
\begin{equation*} + \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } = \end{equation*}
\begin{equation*} = \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon ). \end{equation*}
This algebra $L ( \varepsilon )$ is called the Lie algebra associated with $U ( \varepsilon )$.
The concepts of a triple system and a supertriple system are important in the theory of quarks and Yang–Baxter equations.
Note that a "triple system" in the sense discussed above is totally different from "triple system" in combinatorics (see, e.g., Steiner triple system).
References
[a1] | H. Freudenthal, "Beziehungen der $E _ { 7 }$ und $E _ { 8 }$ zur Oktavenebene I–II" Indag. Math. , 16 (1954) pp. 218–230; 363–386 |
[a2] | N. Kamiya, "The construction of all simple Lie algebras over $C$ from balanced Freudenthal–Kantor triple systems" , Contributions to General Algebra , 7 , Hölder–Pichler–Tempsky, Wien (1991) pp. 205–213 |
[a3] | N. Kamiya, "On Freudenthal–Kantor triple systems and generalized structurable algebras" , Non-Associative Algebra and Its Applications , Kluwer Acad. Publ. (1994) pp. 198–203 |
[a4] | N. Kamiya, S. Okubo, "On $\delta$-Lie supertriple systems associated with $( \varepsilon , \delta )$-Freudenthal–Kantor supertriple systems" Proc. Edinburgh Math. Soc. , 43 (2000) pp. 243–260 |
[a5] | I.L. Kantor, "Models of exceptional Lie algebras" Soviet Math. Dokl. , 14 (1973) pp. 254–258 |
[a6] | S. Okubo, "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press (1995) |
[a7] | K. Yamaguti, "On the metasymplectic geometry and triple systems" Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ. , 306 (1977) pp. 55–92 (In Japanese) |
Freudenthal-Kantor triple system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Freudenthal-Kantor_triple_system&oldid=49875