Difference between revisions of "Trigonometric polynomial"
Ulf Rehmann (talk | contribs) m (Undo revision 49036 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | t0942301.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/T094/T.0904230 Trigonometric polynomial, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''finite trigonometric sum'' | ''finite trigonometric sum'' | ||
An expression of the form | An expression of the form | ||
− | + | $$ | |
+ | T ( x) = { | ||
+ | \frac{a _ {0} }{2} | ||
+ | } + | ||
+ | \sum _ {k = 1 } ^ { n } ( a _ {k} \cos kx + b _ {k} \sin kx) | ||
+ | $$ | ||
− | with real coefficients | + | with real coefficients $ a _ {0} , a _ {k} , b _ {k} $, |
+ | $ k = 1 \dots n $; | ||
+ | the number $ n $ | ||
+ | is called the order of the trigonometric polynomial (provided $ | a _ {n} | + | b _ {n} | > 0 $). | ||
+ | A trigonometric polynomial can be written in complex form: | ||
− | + | $$ | |
+ | T ( x) = \sum _ {k = - n } ^ { n } c _ {k} e ^ {ikx} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | 2c _ {k} = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | a _ {k} - ib _ {k} , &k \geq 0 \ ( \textrm{ with } b _ {0} = 0), \\ | ||
+ | a _ {-} k + ib _ {-} k , &k < 0 . \\ | ||
+ | \end{array} | ||
+ | |||
+ | \right .$$ | ||
Trigonometric polynomials are an important tool in the [[Approximation of functions|approximation of functions]]. | Trigonometric polynomials are an important tool in the [[Approximation of functions|approximation of functions]]. | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Cf. also [[Trigonometric series|Trigonometric series]]. | Cf. also [[Trigonometric series|Trigonometric series]]. |
Revision as of 14:56, 7 June 2020
finite trigonometric sum
An expression of the form
$$ T ( x) = { \frac{a _ {0} }{2} } + \sum _ {k = 1 } ^ { n } ( a _ {k} \cos kx + b _ {k} \sin kx) $$
with real coefficients $ a _ {0} , a _ {k} , b _ {k} $, $ k = 1 \dots n $; the number $ n $ is called the order of the trigonometric polynomial (provided $ | a _ {n} | + | b _ {n} | > 0 $). A trigonometric polynomial can be written in complex form:
$$ T ( x) = \sum _ {k = - n } ^ { n } c _ {k} e ^ {ikx} , $$
where
$$ 2c _ {k} = \left \{ \begin{array}{ll} a _ {k} - ib _ {k} , &k \geq 0 \ ( \textrm{ with } b _ {0} = 0), \\ a _ {-} k + ib _ {-} k , &k < 0 . \\ \end{array} \right .$$
Trigonometric polynomials are an important tool in the approximation of functions.
Comments
Cf. also Trigonometric series.
Trigonometric polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trigonometric_polynomial&oldid=49637