|
|
Line 1: |
Line 1: |
− | A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771001.png" /> associating to each [[Semi-group|semi-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771002.png" /> a congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771003.png" /> (cf. [[Congruence (in algebra)|Congruence (in algebra)]]) and having the following properties: 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771004.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771005.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771006.png" /> (0 denotes the equality relation), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771007.png" />; 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771008.png" /> is a congruence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r0771009.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710011.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710012.png" />. If 1) and 3) are satisfied, then 2) is equivalent to
| + | <!-- |
| + | r0771001.png |
| + | $#A+1 = 67 n = 1 |
| + | $#C+1 = 67 : ~/encyclopedia/old_files/data/R077/R.0707100 Radical in a class of semi\AAhgroups |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710013.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | for every congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710014.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710015.png" />. A semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710016.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710018.png" />-semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710019.png" />. The class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710020.png" />-semi-simple semi-groups contains the one-element semi-group and is closed relative to isomorphism and subdirect products. Conversely, each class of semi-groups having these properties is the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710021.png" />-semi-simple semi-groups for some radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710022.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710024.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710026.png" />-radical. In contrast to rings, in semi-groups the radical is not determined by the corresponding radical class. If in the definition of a radical the discussion is limited to congruences defined by ideals, then another concept of a radical arises, where the corresponding function chooses an [[Ideal|ideal]] in each semi-group.
| + | A function $ \rho $ |
| + | associating to each [[Semi-group|semi-group]] $ S $ |
| + | a congruence $ \rho ( S) $( |
| + | cf. [[Congruence (in algebra)|Congruence (in algebra)]]) and having the following properties: 1) if $ S $ |
| + | is isomorphic to $ T $ |
| + | and $ \rho ( S) = 0 $( |
| + | 0 denotes the equality relation), then $ \rho ( T) = 0 $; |
| + | 2) if $ \theta $ |
| + | is a congruence on $ S $ |
| + | and $ \rho ( S / \theta ) = 0 $, |
| + | then $ \rho ( S) \leq \theta $; |
| + | and 3) $ \rho ( S / \rho ( S) ) = 0 $. |
| + | If 1) and 3) are satisfied, then 2) is equivalent to |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710027.png" /> is a class of semi-groups that is closed relative to isomorphisms and that contains the one-element semi-group, then the function that associates to each semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710028.png" /> the intersection of all congruences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710030.png" /> turns out to be a radical, called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710031.png" />. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710032.png" /> coincides with the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710033.png" />-semi-simple semi-groups if and only if it is closed relative to subdirect products. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710034.png" /> is the largest quotient semi-group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710035.png" /> that lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710036.png" /> (see [[Replica|Replica]]).
| + | $$ |
| + | \sup \{ \rho ( S) , \theta \} / \theta \leq \rho ( S / \theta ) |
| + | $$ |
| | | |
− | Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710037.png" /> be the class of semi-groups admitting a faithful irreducible representation (cf. [[Representation of a semi-group|Representation of a semi-group]]). Then
| + | for every congruence $ \theta $ |
| + | on $ S $. |
| + | A semi-group $ S $ |
| + | is called $ \rho $- |
| + | semi-simple if $ \rho ( S) = 0 $. |
| + | The class of $ \rho $- |
| + | semi-simple semi-groups contains the one-element semi-group and is closed relative to isomorphism and subdirect products. Conversely, each class of semi-groups having these properties is the class of $ \rho $- |
| + | semi-simple semi-groups for some radical $ \rho $. |
| + | If $ \rho ( S) = S \times S $, |
| + | then $ S $ |
| + | is called $ \rho $- |
| + | radical. In contrast to rings, in semi-groups the radical is not determined by the corresponding radical class. If in the definition of a radical the discussion is limited to congruences defined by ideals, then another concept of a radical arises, where the corresponding function chooses an [[Ideal|ideal]] in each semi-group. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710038.png" /></td> </tr></table>
| + | If $ \mathfrak K $ |
| + | is a class of semi-groups that is closed relative to isomorphisms and that contains the one-element semi-group, then the function that associates to each semi-group $ S $ |
| + | the intersection of all congruences $ \theta $ |
| + | such that $ S / \theta \in \mathfrak K $ |
| + | turns out to be a radical, called $ \rho _ {\mathfrak K } $. |
| + | The class $ \mathfrak K $ |
| + | coincides with the class of $ \rho _ {\mathfrak K } $- |
| + | semi-simple semi-groups if and only if it is closed relative to subdirect products. In this case $ S / \rho _ {\mathfrak K } ( S) $ |
| + | is the largest quotient semi-group of $ S $ |
| + | that lies in $ \mathfrak K $( |
| + | see [[Replica|Replica]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710039.png" /></td> </tr></table>
| + | Example. Let $ \mathfrak K $ |
| + | be the class of semi-groups admitting a faithful irreducible representation (cf. [[Representation of a semi-group|Representation of a semi-group]]). Then |
| + | |
| + | $$ |
| + | \rho _ {\mathfrak K } ( s) = |
| + | $$ |
| + | |
| + | $$ |
| + | = \ |
| + | \{ ( a , b ) : a , b \in S , ( a , b ) |
| + | \in \mu ( as ) \cap \mu ( b s ) \textrm{ for all } s \in S \cup \emptyset \} , |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710040.png" /></td> </tr></table>
| + | $$ |
| + | \mu ( a) = \{ {( x , y ) } : { |
| + | x , y \in S , a ^ {m} x = a ^ {n} y \textrm{ for some } \ |
| + | m , n \geq 0 } \} |
| + | . |
| + | $$ |
| | | |
| Radicals defined on a given class of semi-groups that is closed relative to homomorphic images have been studied. | | Radicals defined on a given class of semi-groups that is closed relative to homomorphic images have been studied. |
| | | |
− | Related to each radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710041.png" /> is the class of left polygons <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710042.png" /> (cf. [[Polygon (over a monoid)|Polygon (over a monoid)]]). Namely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710043.png" /> is a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710044.png" />-polygon, then a congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710045.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710046.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710048.png" />-annihilating if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710049.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710050.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710051.png" />. The least upper bound of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710052.png" />-annihilating congruences turns out to be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710053.png" />-annihilating congruence, and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710054.png" />. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710055.png" />, by definition, consists of all left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710056.png" />-polygons <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710057.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710058.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710059.png" /> runs through the class of all semi-groups. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710060.png" /> is a congruence on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710061.png" />, then a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710062.png" />-polygon lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710063.png" /> if and only if it lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710064.png" /> when considered as a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710065.png" />-polygon. Conversely, if one is given a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710066.png" /> of left polygons with these properties and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710067.png" /> is the class of all left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710068.png" />-polygons in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710069.png" />, then the function | + | Related to each radical $ \rho $ |
| + | is the class of left polygons $ \Sigma ( \rho ) $( |
| + | cf. [[Polygon (over a monoid)|Polygon (over a monoid)]]). Namely, if $ A $ |
| + | is a left $ S $- |
| + | polygon, then a congruence $ \theta $ |
| + | on $ S $ |
| + | is called $ A $- |
| + | annihilating if $ ( \lambda , \mu ) \in \theta $ |
| + | implies $ \lambda a = \mu a $ |
| + | for all $ a \in A $. |
| + | The least upper bound of all $ A $- |
| + | annihilating congruences turns out to be an $ A $- |
| + | annihilating congruence, and is denoted by $ \mathop{\rm Ann} A $. |
| + | The class $ \Sigma ( \rho ) $, |
| + | by definition, consists of all left $ S $- |
| + | polygons $ A $ |
| + | such that $ \rho ( S / \mathop{\rm Ann} A ) = 0 $, |
| + | where $ S $ |
| + | runs through the class of all semi-groups. If $ \theta $ |
| + | is a congruence on $ S $, |
| + | then a left $ ( S / \theta ) $- |
| + | polygon lies in $ \Sigma ( \rho ) $ |
| + | if and only if it lies in $ \Sigma ( \rho ) $ |
| + | when considered as a left $ S $- |
| + | polygon. Conversely, if one is given a class $ \Sigma $ |
| + | of left polygons with these properties and if $ \Sigma ( s) $ |
| + | is the class of all left $ S $- |
| + | polygons in $ \Sigma $, |
| + | then the function |
| + | |
| + | $$ |
| + | \rho ( S) = \ |
| + | \left \{ |
| + | |
| + | \begin{array}{ll} |
| + | S \times S & \textrm{ if } \Sigma ( S) \textrm{ is empty } , \\ |
| + | \cap _ {A \in \Sigma ( S) } \mathop{\rm Ann} A & \textrm{ otherwise } , \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077100/r07710070.png" /></td> </tr></table>
| + | \right .$$ |
| | | |
| is a radical. | | is a radical. |
A function $ \rho $
associating to each semi-group $ S $
a congruence $ \rho ( S) $(
cf. Congruence (in algebra)) and having the following properties: 1) if $ S $
is isomorphic to $ T $
and $ \rho ( S) = 0 $(
0 denotes the equality relation), then $ \rho ( T) = 0 $;
2) if $ \theta $
is a congruence on $ S $
and $ \rho ( S / \theta ) = 0 $,
then $ \rho ( S) \leq \theta $;
and 3) $ \rho ( S / \rho ( S) ) = 0 $.
If 1) and 3) are satisfied, then 2) is equivalent to
$$
\sup \{ \rho ( S) , \theta \} / \theta \leq \rho ( S / \theta )
$$
for every congruence $ \theta $
on $ S $.
A semi-group $ S $
is called $ \rho $-
semi-simple if $ \rho ( S) = 0 $.
The class of $ \rho $-
semi-simple semi-groups contains the one-element semi-group and is closed relative to isomorphism and subdirect products. Conversely, each class of semi-groups having these properties is the class of $ \rho $-
semi-simple semi-groups for some radical $ \rho $.
If $ \rho ( S) = S \times S $,
then $ S $
is called $ \rho $-
radical. In contrast to rings, in semi-groups the radical is not determined by the corresponding radical class. If in the definition of a radical the discussion is limited to congruences defined by ideals, then another concept of a radical arises, where the corresponding function chooses an ideal in each semi-group.
If $ \mathfrak K $
is a class of semi-groups that is closed relative to isomorphisms and that contains the one-element semi-group, then the function that associates to each semi-group $ S $
the intersection of all congruences $ \theta $
such that $ S / \theta \in \mathfrak K $
turns out to be a radical, called $ \rho _ {\mathfrak K } $.
The class $ \mathfrak K $
coincides with the class of $ \rho _ {\mathfrak K } $-
semi-simple semi-groups if and only if it is closed relative to subdirect products. In this case $ S / \rho _ {\mathfrak K } ( S) $
is the largest quotient semi-group of $ S $
that lies in $ \mathfrak K $(
see Replica).
Example. Let $ \mathfrak K $
be the class of semi-groups admitting a faithful irreducible representation (cf. Representation of a semi-group). Then
$$
\rho _ {\mathfrak K } ( s) =
$$
$$
= \
\{ ( a , b ) : a , b \in S , ( a , b )
\in \mu ( as ) \cap \mu ( b s ) \textrm{ for all } s \in S \cup \emptyset \} ,
$$
where
$$
\mu ( a) = \{ {( x , y ) } : {
x , y \in S , a ^ {m} x = a ^ {n} y \textrm{ for some } \
m , n \geq 0 } \}
.
$$
Radicals defined on a given class of semi-groups that is closed relative to homomorphic images have been studied.
Related to each radical $ \rho $
is the class of left polygons $ \Sigma ( \rho ) $(
cf. Polygon (over a monoid)). Namely, if $ A $
is a left $ S $-
polygon, then a congruence $ \theta $
on $ S $
is called $ A $-
annihilating if $ ( \lambda , \mu ) \in \theta $
implies $ \lambda a = \mu a $
for all $ a \in A $.
The least upper bound of all $ A $-
annihilating congruences turns out to be an $ A $-
annihilating congruence, and is denoted by $ \mathop{\rm Ann} A $.
The class $ \Sigma ( \rho ) $,
by definition, consists of all left $ S $-
polygons $ A $
such that $ \rho ( S / \mathop{\rm Ann} A ) = 0 $,
where $ S $
runs through the class of all semi-groups. If $ \theta $
is a congruence on $ S $,
then a left $ ( S / \theta ) $-
polygon lies in $ \Sigma ( \rho ) $
if and only if it lies in $ \Sigma ( \rho ) $
when considered as a left $ S $-
polygon. Conversely, if one is given a class $ \Sigma $
of left polygons with these properties and if $ \Sigma ( s) $
is the class of all left $ S $-
polygons in $ \Sigma $,
then the function
$$
\rho ( S) = \
\left \{
\begin{array}{ll}
S \times S & \textrm{ if } \Sigma ( S) \textrm{ is empty } , \\
\cap _ {A \in \Sigma ( S) } \mathop{\rm Ann} A & \textrm{ otherwise } , \\
\end{array}
\right .$$
is a radical.
References
[1] | A.H. Clifford, G.B. Preston, "The algebraic theory of semi-groups" , 2 , Amer. Math. Soc. (1967) |
[2] | L.A. Skornyakov, "Radicals of -rings" , Selected problems in algebra and logic , Novosibirsk (1973) pp. 283–299 (In Russian) |
[3] | A.H. Clifford, "Radicals in semigroups" Semigroup Forum , 1 : 2 (1970) pp. 103–127 |
[4] | E.N. Roiz, B.M. Schein, "Radicals of semigroups" Semigroup Forum , 16 : 3 (1978) pp. 299–344 |