|
|
Line 1: |
Line 1: |
− | A quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768601.png" /> is given by two sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768602.png" /> and two mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768603.png" />; the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768604.png" /> are called vertices or points, those of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768605.png" /> arrows; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768606.png" /> is an arrow, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768607.png" /> is called its start vertex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768608.png" /> its end vertex, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q0768609.png" /> is said to go from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686010.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686011.png" />, written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686012.png" />. (Thus, a quiver is nothing else than a directed graph with possibly multiple arrows and loops (cf. [[Graph, oriented|Graph, oriented]]), or a diagram scheme in the sense of A. Grothendieck; the word "quiver" is due to P. Gabriel.) Given a quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686013.png" />, there is the opposite quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686014.png" />, with the same set of vertices but with the reversed orientation for all the arrows.
| + | <!-- |
| + | q0768601.png |
| + | $#A+1 = 171 n = 0 |
| + | $#C+1 = 171 : ~/encyclopedia/old_files/data/Q076/Q.0706860 Quiver |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Given a quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686015.png" />, a path in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686016.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686017.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686019.png" /> are arrows with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686021.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686022.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686023.png" />; a path in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686024.png" /> of length 0 is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686025.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686027.png" /> is a path, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686028.png" /> is called its start vertex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686029.png" /> its end vertex; paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686030.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686031.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686032.png" /> are called cyclic paths.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686033.png" /> be a field. The path algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686035.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686036.png" /> is the free vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686037.png" /> with as basis the set of paths in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686038.png" />, and with distributive multiplication given on the basis by
| + | A quiver $ Q = ( Q _ {0} , Q _ {1} , s, e) $ |
| + | is given by two sets $ Q _ {0} , Q _ {1} $ |
| + | and two mappings $ s, e: Q _ {1} \rightarrow Q _ {0} $; |
| + | the elements of $ Q _ {0} $ |
| + | are called vertices or points, those of $ Q _ {1} $ |
| + | arrows; if $ \alpha $ |
| + | is an arrow, then $ s ( \alpha ) $ |
| + | is called its start vertex, $ e ( \alpha ) $ |
| + | its end vertex, and $ \alpha $ |
| + | is said to go from $ s( \alpha ) $ |
| + | to $ e ( \alpha ) $, |
| + | written as $ \alpha : s( \alpha ) \rightarrow e ( \alpha ) $. |
| + | (Thus, a quiver is nothing else than a directed graph with possibly multiple arrows and loops (cf. [[Graph, oriented|Graph, oriented]]), or a diagram scheme in the sense of A. Grothendieck; the word "quiver" is due to P. Gabriel.) Given a quiver $ Q = ( Q _ {0} , Q _ {1} , s , e ) $, |
| + | there is the opposite quiver $ Q ^ {*} = ( Q _ {0} , Q _ {1} , e, s ) $, |
| + | with the same set of vertices but with the reversed orientation for all the arrows. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686039.png" /></td> </tr></table>
| + | Given a quiver $ Q $, |
| + | a path in $ Q $ |
| + | of length $ l \geq 1 $ |
| + | is of the form $ ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $, |
| + | where $ \alpha _ {i} $ |
| + | are arrows with $ x = s( \alpha _ {1} ) $, |
| + | $ e ( \alpha _ {i} ) = s( \alpha _ {i+} 1 ) $ |
| + | for $ 1 \leq i < l $, |
| + | and $ e ( \alpha _ {l} ) = y $; |
| + | a path in $ Q $ |
| + | of length 0 is of the form $ ( x \mid x) $ |
| + | with $ x \in Q _ {0} $. |
| + | If $ \omega = ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $ |
| + | is a path, then $ x = s( \omega ) $ |
| + | is called its start vertex, $ y = e( \omega ) $ |
| + | its end vertex; paths $ \omega $ |
| + | of length $ \geq 1 $ |
| + | with $ s( \omega ) = e( \omega ) $ |
| + | are called cyclic paths. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686040.png" /></td> </tr></table>
| + | Let $ k $ |
| + | be a field. The path algebra $ kQ $ |
| + | of $ Q $ |
| + | over $ k $ |
| + | is the free vector space over $ k $ |
| + | with as basis the set of paths in $ Q $, |
| + | and with distributive multiplication given on the basis by |
| | | |
− | The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686041.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686042.png" /> are primitive and orthogonal idempotents, and in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686043.png" /> is finite, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686044.png" /> is the unit element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686045.png" />. Note that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686046.png" /> is finite-dimensional if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686047.png" /> is finite and has no cyclic path.
| + | $$ |
| + | ( x | \alpha _ {1} \dots \alpha _ {l} | y) \cdot |
| + | ( x ^ \prime | \alpha _ {1} ^ \prime \dots \alpha _ {l ^ \prime } ^ \prime | |
| + | y ^ \prime ) = |
| + | $$ |
| | | |
− | Recall that a ring of global dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686048.png" /> is said to be hereditary, and a finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686049.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686050.png" /> with radical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686051.png" /> is said to be split basic provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686053.png" /> is a product of copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686054.png" />. The path algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686055.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686056.png" /> a finite quiver without a cyclic path are precisely the finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686057.png" />-algebras which are hereditary and split basic.
| + | $$ |
| + | = \ |
| + | \left \{ |
| + | \begin{array}{ll} |
| + | ( x | \alpha _ {1} \dots \alpha _ {l} , \alpha _ {1} ^ \prime \dots \alpha _ {l ^ \prime } ^ \prime | y ^ \prime ) & \textrm{ if } \ |
| + | y = x ^ \prime , \\ |
| + | 0 &{ \textrm{ if } y \neq x ^ \prime . } \\ |
| + | \end{array} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686058.png" /> be a quiver and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686059.png" /> a field. A representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686060.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686061.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686062.png" /> is given by a family of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686063.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686064.png" />) and a family of linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686065.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686066.png" />). Given two representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686067.png" />, a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686068.png" /> is given by linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686069.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686070.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686071.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686072.png" /> be finite. The category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686073.png" /> of right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686074.png" />-modules is equivalent to the category of representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686075.png" /> (provided one applies all the vector space mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686076.png" />, as well as the module homomorphisms in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686077.png" />, on the right), and usually one identifies these categories. For any vertex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686078.png" />, there is the one-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686080.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686081.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686082.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686083.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686084.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686085.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686086.png" /> is equal to the number of arrows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686087.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686088.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686089.png" />. Given a finite-dimensional representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686090.png" />, its dimension vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686091.png" /> has, by definition, integral coordinates: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686092.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686093.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686094.png" /> is called the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686095.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686096.png" /> has no cyclic path, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686097.png" /> is just the Jordan–Hölder multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686098.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q07686099.png" />.
| + | \right .$$ |
| | | |
− | A finite quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860100.png" /> is called representation-finite, tame or wild if the path algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860101.png" /> has this property. A connected quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860102.png" /> is representation-finite if and only if the underlying graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860103.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860104.png" /> (obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860105.png" /> by deleting the orientation of the edges) is a [[Dynkin diagram|Dynkin diagram]] of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860110.png" />, see [[#References|[a4]]], [[#References|[a1]]]; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860111.png" /> is tame if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860112.png" /> is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860114.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860115.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860116.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860117.png" />, see [[#References|[a3]]], [[#References|[a8]]]. More precisely, recall that an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860118.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860119.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860120.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860121.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860122.png" /> is called a symmetric generalized Cartan matrix [[#References|[a6]]]. To a symmetric generalized Cartan <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860123.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860124.png" /> one associates the following quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860125.png" />: its set of vertices is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860126.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860127.png" /> one draws <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860128.png" /> arrows from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860129.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860130.png" />. Note that the quivers of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860131.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860132.png" /> a symmetric generalized Cartan matrix are precisely the quivers without a cyclic path.
| + | The elements $ ( x \mid x ) $ |
| + | with $ x \in Q _ {0} $ |
| + | are primitive and orthogonal idempotents, and in case $ Q _ {0} $ |
| + | is finite, $ 1 = \sum _ {x \in Q _ {0} } ( x \mid x) $ |
| + | is the unit element of $ kQ $. |
| + | Note that $ k Q $ |
| + | is finite-dimensional if and only if $ Q $ |
| + | is finite and has no cyclic path. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860133.png" /> be a symmetric generalized Cartan matrix. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860134.png" /> is an indecomposable representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860135.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860136.png" /> is a positive [[Root|root]] for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860137.png" />, and all positive roots are obtained in this way; the number of isomorphism classes of indecomposable representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860138.png" /> with fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860139.png" /> depends on whether <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860140.png" /> is a real root (then there is just one class) or an imaginary root [[#References|[a7]]].
| + | Recall that a ring of global dimension $ \leq 1 $ |
| + | is said to be hereditary, and a finite-dimensional $ k $- |
| + | algebra $ A $ |
| + | with radical $ N $ |
| + | is said to be split basic provided $ A/N $ |
| + | is a product of copies of $ k $. |
| + | The path algebras $ kQ $ |
| + | with $ Q $ |
| + | a finite quiver without a cyclic path are precisely the finite-dimensional $ k $- |
| + | algebras which are hereditary and split basic. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860141.png" /> be a quiver. A non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860142.png" />-linear combination of paths of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860143.png" /> with the same start vertex and the same end vertex is called a relation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860144.png" />. Given a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860145.png" /> of relations, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860146.png" /> be the ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860147.png" /> generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860148.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860149.png" /> is said to be an algebra defined by a quiver with relations. A finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860150.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860151.png" /> is isomorphic to one defined by a quiver with relations if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860152.png" /> is split basic. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860153.png" /> is algebraically closed, then any finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860154.png" />-algebra is Morita equivalent to one defined by a quiver with relations. All representation-finite and certain minimal representation-infinite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860155.png" />-algebras over an algebraically closed field are defined by quivers with relations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860156.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860157.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860158.png" /> are paths (the multiplicative basis theorem, [[#References|[a2]]]); this shows that the study of representation-finite algebras is a purely combinatorial problem; it was a decisive step for the proof of the second Brauer–Thrall conjecture (see [[Representation of an associative algebra|Representation of an associative algebra]]). | + | Let $ Q $ |
| + | be a quiver and $ k $ |
| + | a field. A representation $ V = ( V _ {x} , V _ \alpha ) $ |
| + | of $ Q $ |
| + | over $ k $ |
| + | is given by a family of vector spaces $ V _ {x} $( |
| + | $ x \in Q _ {0} $) |
| + | and a family of linear mappings $ V _ \alpha : V _ {s( \alpha ) } \rightarrow V _ {e( \alpha ) } $( |
| + | $ \alpha \in Q _ {1} $). |
| + | Given two representations $ V, V ^ \prime $, |
| + | a mapping $ f = ( f _ {x} ): V \rightarrow V ^ \prime $ |
| + | is given by linear mappings $ f _ {x} : V _ {x} \rightarrow V _ {x} ^ \prime $ |
| + | such that for any $ \alpha \in Q _ {1} $ |
| + | one has $ f _ {s ( \alpha ) } V _ \alpha ^ \prime = V _ \alpha f _ {e( \alpha ) } $. |
| + | Let $ Q $ |
| + | be finite. The category $ \mathop{\rm mod} kQ $ |
| + | of right $ kQ $- |
| + | modules is equivalent to the category of representations of $ Q $( |
| + | provided one applies all the vector space mappings $ V _ \alpha , f _ {x} $, |
| + | as well as the module homomorphisms in $ \mathop{\rm mod} kQ $, |
| + | on the right), and usually one identifies these categories. For any vertex $ x \in Q _ {0} $, |
| + | there is the one-dimensional representation $ S( x) $ |
| + | of $ Q $ |
| + | defined by $ S( x) _ {x} = k $, |
| + | $ S ( x) _ {y} = 0 $ |
| + | for $ y \neq x \in Q _ {0} $ |
| + | and $ S( x) _ \alpha = 0 $ |
| + | for $ \alpha \in Q _ {1} $. |
| + | Then $ \mathop{\rm dim} _ {k} \mathop{\rm Ext} ^ {1} ( S( i), S( j)) $ |
| + | is equal to the number of arrows $ \alpha $ |
| + | with $ s( \alpha ) = i $ |
| + | and $ e ( \alpha ) = j $. |
| + | Given a finite-dimensional representation $ V $, |
| + | its dimension vector $ bold \mathop{\rm dim} V $ |
| + | has, by definition, integral coordinates: $ ( bold \mathop{\rm dim} V) _ {x} = \mathop{\rm dim} _ {k} V _ {x} $ |
| + | for $ x \in Q _ {0} $; |
| + | and $ \sum _ {x \in Q _ {0} } ( bold \mathop{\rm dim} V ) _ {x} $ |
| + | is called the dimension of $ V $. |
| + | In case $ Q $ |
| + | has no cyclic path, $ ( bold \mathop{\rm dim} V ) _ {x} $ |
| + | is just the Jordan–Hölder multiplicity of $ S( x) $ |
| + | in $ V $. |
| | | |
− | The representation theory of quivers has been developed in order to deal effectively with certain types of matrix problems over a fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860159.png" /> as they arise in algebra, geometry and analysis. Typical tame quivers are the Kronecker quiver
| + | A finite quiver $ Q $ |
| + | is called representation-finite, tame or wild if the path algebra $ kQ $ |
| + | has this property. A connected quiver $ Q $ |
| + | is representation-finite if and only if the underlying graph $ \overline{Q}\; $ |
| + | of $ Q $( |
| + | obtained from $ Q $ |
| + | by deleting the orientation of the edges) is a [[Dynkin diagram|Dynkin diagram]] of the form $ A _ {n} $, |
| + | $ D _ {n} $, |
| + | $ E _ {6} $, |
| + | $ E _ {7} $, |
| + | $ E _ {8} $, |
| + | see [[#References|[a4]]], [[#References|[a1]]]; and $ Q $ |
| + | is tame if and only if $ \overline{Q}\; $ |
| + | is of the form $ {\widetilde{A} } _ {n} $, |
| + | $ {\widetilde{D} } _ {n} $, |
| + | $ {\widetilde{E} } _ {6} $, |
| + | $ {\widetilde{E} } _ {7} $, |
| + | $ {\widetilde{E} } _ {8} $, |
| + | see [[#References|[a3]]], [[#References|[a8]]]. More precisely, recall that an $ ( n \times n ) $- |
| + | matrix $ ( a _ {ij} ) _ {ij} $ |
| + | with $ a _ {ii} = 2 $ |
| + | and $ a _ {ij} = a _ {ji} \leq 0 $ |
| + | for all $ i \neq j $ |
| + | is called a symmetric generalized Cartan matrix [[#References|[a6]]]. To a symmetric generalized Cartan $ ( n \times n ) $- |
| + | matrix $ \Delta = ( a _ {ij} ) _ {ij} $ |
| + | one associates the following quiver $ Q ( \Delta ) $: |
| + | its set of vertices is $ Q( \Delta ) _ {0} = \{ 1 \dots n \} $, |
| + | and for $ 1 \leq i < j \leq n $ |
| + | one draws $ - a _ {ij} $ |
| + | arrows from $ i $ |
| + | to $ j $. |
| + | Note that the quivers of the form $ Q( \Delta ) $ |
| + | with $ \Delta $ |
| + | a symmetric generalized Cartan matrix are precisely the quivers without a cyclic path. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860160.png" /></td> </tr></table>
| + | Let $ \Delta $ |
| + | be a symmetric generalized Cartan matrix. If $ V $ |
| + | is an indecomposable representation of $ Q ( \Delta ) $, |
| + | then $ bold \mathop{\rm dim} V $ |
| + | is a positive [[Root|root]] for $ \Delta $, |
| + | and all positive roots are obtained in this way; the number of isomorphism classes of indecomposable representations $ V $ |
| + | with fixed $ bold \mathop{\rm dim} V $ |
| + | depends on whether $ bold \mathop{\rm dim} V $ |
| + | is a real root (then there is just one class) or an imaginary root [[#References|[a7]]]. |
| | | |
− | its representations are just the matrix pencils (pairs of matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860161.png" /> of the same size, considered with respect to the equivalence relation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860162.png" /> if and only if there are invertible matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860163.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860164.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860165.png" />), and the four-subspace quiver
| + | Let $ Q $ |
| + | be a quiver. A non-zero $ k $- |
| + | linear combination of paths of length $ \geq 2 $ |
| + | with the same start vertex and the same end vertex is called a relation on $ Q $. |
| + | Given a set $ \{ \rho _ {i} \} _ {i} $ |
| + | of relations, let $ \langle \rho _ {i} \mid i \rangle $ |
| + | be the ideal in $ kQ $ |
| + | generated $ \{ \rho _ {i} \} _ {i} $. |
| + | Then $ A = kQ / \langle \rho _ {i} \mid i \rangle $ |
| + | is said to be an algebra defined by a quiver with relations. A finite-dimensional $ k $- |
| + | algebra $ A $ |
| + | is isomorphic to one defined by a quiver with relations if and only if $ A $ |
| + | is split basic. Thus, if $ k $ |
| + | is algebraically closed, then any finite-dimensional $ k $- |
| + | algebra is Morita equivalent to one defined by a quiver with relations. All representation-finite and certain minimal representation-infinite $ k $- |
| + | algebras over an algebraically closed field are defined by quivers with relations of the form $ \omega $, |
| + | and $ \omega _ {1} - \omega _ {2} $, |
| + | where $ \omega , \omega _ {1} , \omega _ {2} $ |
| + | are paths (the multiplicative basis theorem, [[#References|[a2]]]); this shows that the study of representation-finite algebras is a purely combinatorial problem; it was a decisive step for the proof of the second Brauer–Thrall conjecture (see [[Representation of an associative algebra|Representation of an associative algebra]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860166.png" /></td> </tr></table>
| + | The representation theory of quivers has been developed in order to deal effectively with certain types of matrix problems over a fixed field $ k $ |
| + | as they arise in algebra, geometry and analysis. Typical tame quivers are the Kronecker quiver |
| | | |
− | In general, the representation theory of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860168.png" />-subspace quiver
| + | $$ |
| + | \circ \ \ \circ , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860169.png" /></td> </tr></table>
| + | its representations are just the matrix pencils (pairs of matrices $ A , B $ |
| + | of the same size, considered with respect to the equivalence relation: $ ( A, B) \sim ( A ^ \prime , B ^ \prime ) $ |
| + | if and only if there are invertible matrices $ P , Q $ |
| + | with $ A ^ \prime = PAQ $, |
| + | $ B ^ \prime = PBQ $), |
| + | and the four-subspace quiver |
| | | |
− | deals with the mutual position of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860170.png" />-subspaces in a vector space.
| + | $$ |
| | | |
− | Using the language of quivers, these problems are transformed to problems dealing with finite-dimensional split basic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860171.png" />-algebras.
| + | \begin{array}{ll} |
| + | \circ \ &{} \\ |
| + | \circ &{} \\ |
| + | {} &\circ. \\ |
| + | \circ &{} \\ |
| + | \circ &{} \\ |
| + | \end{array} |
| | | |
− | In order to deal with an arbitrary finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860172.png" />-algebra one needs the notion of a species (instead of a quiver), see [[#References|[a5]]]. In this way, one deals with vector space problems which involve different fields. The representation-finite species are those corresponding to arbitrary Dynkin diagrams <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076860/q076860173.png" />, the tame ones correspond to the Euclidean diagrams [[#References|[a9]]]. | + | $$ |
| + | |
| + | In general, the representation theory of the $ n $- |
| + | subspace quiver |
| + | |
| + | $$ |
| + | |
| + | \begin{array}{ll} |
| + | \circ \ &{} \\ |
| + | . &{} \\ |
| + | . &\circ . \\ |
| + | . &{} \\ |
| + | \circ &{} \\ |
| + | \end{array} |
| + | |
| + | $$ |
| + | |
| + | deals with the mutual position of $ n $- |
| + | subspaces in a vector space. |
| + | |
| + | Using the language of quivers, these problems are transformed to problems dealing with finite-dimensional split basic $ k $- |
| + | algebras. |
| + | |
| + | In order to deal with an arbitrary finite-dimensional $ k $- |
| + | algebra one needs the notion of a species (instead of a quiver), see [[#References|[a5]]]. In this way, one deals with vector space problems which involve different fields. The representation-finite species are those corresponding to arbitrary Dynkin diagrams $ ( A _ {n} , B _ {n} , C _ {n} \dots G _ {2} ) $, |
| + | the tame ones correspond to the Euclidean diagrams [[#References|[a9]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' : 2 (1973) pp. 17–32 ''Uspekhi Mat. Nauk'' , '''28''' : 2 (1973) pp. 19–34</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Bautista, P. Gabriel, A. Rojter, L. Salmeron, "Representation-finite algebras and multiplicative basis" ''Invent. Math.'' , '''81''' (1985) pp. 217–285</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Donovan, M.R. Freislich, "The representation of finite graphs and associated algebras" ''Carleton Lecture Notes'' , '''5''' (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Gabriel, "Unzerlegbare Darstellungen I" ''Manuscripta Math.'' , '''6''' (1972) pp. 71–103</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P. Gabriel, "Indecomposable representations II" , ''Symp. Math. INDAM (Rome, 1971)'' , '''XI''' , Acad. Press (1973) pp. 81–104</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1985)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> V.G. Kac, "Infinite root systems, representations of graphs and invariant theory" ''Invent. Math.'' , '''56''' (1980) pp. 57–92</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L.A. Nazarova, "Representations of quivers of infinite type" ''Math. USSR Izv.'' , '''7''' (1973) pp. 749–792 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''37''' (1973) pp. 752–791</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" ''Memoirs Amer. Math. Soc.'' , '''173''' (1976)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' : 2 (1973) pp. 17–32 ''Uspekhi Mat. Nauk'' , '''28''' : 2 (1973) pp. 19–34</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Bautista, P. Gabriel, A. Rojter, L. Salmeron, "Representation-finite algebras and multiplicative basis" ''Invent. Math.'' , '''81''' (1985) pp. 217–285</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Donovan, M.R. Freislich, "The representation of finite graphs and associated algebras" ''Carleton Lecture Notes'' , '''5''' (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> P. Gabriel, "Unzerlegbare Darstellungen I" ''Manuscripta Math.'' , '''6''' (1972) pp. 71–103</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> P. Gabriel, "Indecomposable representations II" , ''Symp. Math. INDAM (Rome, 1971)'' , '''XI''' , Acad. Press (1973) pp. 81–104</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1985)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> V.G. Kac, "Infinite root systems, representations of graphs and invariant theory" ''Invent. Math.'' , '''56''' (1980) pp. 57–92</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> L.A. Nazarova, "Representations of quivers of infinite type" ''Math. USSR Izv.'' , '''7''' (1973) pp. 749–792 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''37''' (1973) pp. 752–791</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" ''Memoirs Amer. Math. Soc.'' , '''173''' (1976)</TD></TR></table> |
A quiver $ Q = ( Q _ {0} , Q _ {1} , s, e) $
is given by two sets $ Q _ {0} , Q _ {1} $
and two mappings $ s, e: Q _ {1} \rightarrow Q _ {0} $;
the elements of $ Q _ {0} $
are called vertices or points, those of $ Q _ {1} $
arrows; if $ \alpha $
is an arrow, then $ s ( \alpha ) $
is called its start vertex, $ e ( \alpha ) $
its end vertex, and $ \alpha $
is said to go from $ s( \alpha ) $
to $ e ( \alpha ) $,
written as $ \alpha : s( \alpha ) \rightarrow e ( \alpha ) $.
(Thus, a quiver is nothing else than a directed graph with possibly multiple arrows and loops (cf. Graph, oriented), or a diagram scheme in the sense of A. Grothendieck; the word "quiver" is due to P. Gabriel.) Given a quiver $ Q = ( Q _ {0} , Q _ {1} , s , e ) $,
there is the opposite quiver $ Q ^ {*} = ( Q _ {0} , Q _ {1} , e, s ) $,
with the same set of vertices but with the reversed orientation for all the arrows.
Given a quiver $ Q $,
a path in $ Q $
of length $ l \geq 1 $
is of the form $ ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $,
where $ \alpha _ {i} $
are arrows with $ x = s( \alpha _ {1} ) $,
$ e ( \alpha _ {i} ) = s( \alpha _ {i+} 1 ) $
for $ 1 \leq i < l $,
and $ e ( \alpha _ {l} ) = y $;
a path in $ Q $
of length 0 is of the form $ ( x \mid x) $
with $ x \in Q _ {0} $.
If $ \omega = ( x | \alpha _ {1} \dots \alpha _ {l} | y ) $
is a path, then $ x = s( \omega ) $
is called its start vertex, $ y = e( \omega ) $
its end vertex; paths $ \omega $
of length $ \geq 1 $
with $ s( \omega ) = e( \omega ) $
are called cyclic paths.
Let $ k $
be a field. The path algebra $ kQ $
of $ Q $
over $ k $
is the free vector space over $ k $
with as basis the set of paths in $ Q $,
and with distributive multiplication given on the basis by
$$
( x | \alpha _ {1} \dots \alpha _ {l} | y) \cdot
( x ^ \prime | \alpha _ {1} ^ \prime \dots \alpha _ {l ^ \prime } ^ \prime |
y ^ \prime ) =
$$
$$
= \
\left \{
\begin{array}{ll}
( x | \alpha _ {1} \dots \alpha _ {l} , \alpha _ {1} ^ \prime \dots \alpha _ {l ^ \prime } ^ \prime | y ^ \prime ) & \textrm{ if } \
y = x ^ \prime , \\
0 &{ \textrm{ if } y \neq x ^ \prime . } \\
\end{array}
\right .$$
The elements $ ( x \mid x ) $
with $ x \in Q _ {0} $
are primitive and orthogonal idempotents, and in case $ Q _ {0} $
is finite, $ 1 = \sum _ {x \in Q _ {0} } ( x \mid x) $
is the unit element of $ kQ $.
Note that $ k Q $
is finite-dimensional if and only if $ Q $
is finite and has no cyclic path.
Recall that a ring of global dimension $ \leq 1 $
is said to be hereditary, and a finite-dimensional $ k $-
algebra $ A $
with radical $ N $
is said to be split basic provided $ A/N $
is a product of copies of $ k $.
The path algebras $ kQ $
with $ Q $
a finite quiver without a cyclic path are precisely the finite-dimensional $ k $-
algebras which are hereditary and split basic.
Let $ Q $
be a quiver and $ k $
a field. A representation $ V = ( V _ {x} , V _ \alpha ) $
of $ Q $
over $ k $
is given by a family of vector spaces $ V _ {x} $(
$ x \in Q _ {0} $)
and a family of linear mappings $ V _ \alpha : V _ {s( \alpha ) } \rightarrow V _ {e( \alpha ) } $(
$ \alpha \in Q _ {1} $).
Given two representations $ V, V ^ \prime $,
a mapping $ f = ( f _ {x} ): V \rightarrow V ^ \prime $
is given by linear mappings $ f _ {x} : V _ {x} \rightarrow V _ {x} ^ \prime $
such that for any $ \alpha \in Q _ {1} $
one has $ f _ {s ( \alpha ) } V _ \alpha ^ \prime = V _ \alpha f _ {e( \alpha ) } $.
Let $ Q $
be finite. The category $ \mathop{\rm mod} kQ $
of right $ kQ $-
modules is equivalent to the category of representations of $ Q $(
provided one applies all the vector space mappings $ V _ \alpha , f _ {x} $,
as well as the module homomorphisms in $ \mathop{\rm mod} kQ $,
on the right), and usually one identifies these categories. For any vertex $ x \in Q _ {0} $,
there is the one-dimensional representation $ S( x) $
of $ Q $
defined by $ S( x) _ {x} = k $,
$ S ( x) _ {y} = 0 $
for $ y \neq x \in Q _ {0} $
and $ S( x) _ \alpha = 0 $
for $ \alpha \in Q _ {1} $.
Then $ \mathop{\rm dim} _ {k} \mathop{\rm Ext} ^ {1} ( S( i), S( j)) $
is equal to the number of arrows $ \alpha $
with $ s( \alpha ) = i $
and $ e ( \alpha ) = j $.
Given a finite-dimensional representation $ V $,
its dimension vector $ bold \mathop{\rm dim} V $
has, by definition, integral coordinates: $ ( bold \mathop{\rm dim} V) _ {x} = \mathop{\rm dim} _ {k} V _ {x} $
for $ x \in Q _ {0} $;
and $ \sum _ {x \in Q _ {0} } ( bold \mathop{\rm dim} V ) _ {x} $
is called the dimension of $ V $.
In case $ Q $
has no cyclic path, $ ( bold \mathop{\rm dim} V ) _ {x} $
is just the Jordan–Hölder multiplicity of $ S( x) $
in $ V $.
A finite quiver $ Q $
is called representation-finite, tame or wild if the path algebra $ kQ $
has this property. A connected quiver $ Q $
is representation-finite if and only if the underlying graph $ \overline{Q}\; $
of $ Q $(
obtained from $ Q $
by deleting the orientation of the edges) is a Dynkin diagram of the form $ A _ {n} $,
$ D _ {n} $,
$ E _ {6} $,
$ E _ {7} $,
$ E _ {8} $,
see [a4], [a1]; and $ Q $
is tame if and only if $ \overline{Q}\; $
is of the form $ {\widetilde{A} } _ {n} $,
$ {\widetilde{D} } _ {n} $,
$ {\widetilde{E} } _ {6} $,
$ {\widetilde{E} } _ {7} $,
$ {\widetilde{E} } _ {8} $,
see [a3], [a8]. More precisely, recall that an $ ( n \times n ) $-
matrix $ ( a _ {ij} ) _ {ij} $
with $ a _ {ii} = 2 $
and $ a _ {ij} = a _ {ji} \leq 0 $
for all $ i \neq j $
is called a symmetric generalized Cartan matrix [a6]. To a symmetric generalized Cartan $ ( n \times n ) $-
matrix $ \Delta = ( a _ {ij} ) _ {ij} $
one associates the following quiver $ Q ( \Delta ) $:
its set of vertices is $ Q( \Delta ) _ {0} = \{ 1 \dots n \} $,
and for $ 1 \leq i < j \leq n $
one draws $ - a _ {ij} $
arrows from $ i $
to $ j $.
Note that the quivers of the form $ Q( \Delta ) $
with $ \Delta $
a symmetric generalized Cartan matrix are precisely the quivers without a cyclic path.
Let $ \Delta $
be a symmetric generalized Cartan matrix. If $ V $
is an indecomposable representation of $ Q ( \Delta ) $,
then $ bold \mathop{\rm dim} V $
is a positive root for $ \Delta $,
and all positive roots are obtained in this way; the number of isomorphism classes of indecomposable representations $ V $
with fixed $ bold \mathop{\rm dim} V $
depends on whether $ bold \mathop{\rm dim} V $
is a real root (then there is just one class) or an imaginary root [a7].
Let $ Q $
be a quiver. A non-zero $ k $-
linear combination of paths of length $ \geq 2 $
with the same start vertex and the same end vertex is called a relation on $ Q $.
Given a set $ \{ \rho _ {i} \} _ {i} $
of relations, let $ \langle \rho _ {i} \mid i \rangle $
be the ideal in $ kQ $
generated $ \{ \rho _ {i} \} _ {i} $.
Then $ A = kQ / \langle \rho _ {i} \mid i \rangle $
is said to be an algebra defined by a quiver with relations. A finite-dimensional $ k $-
algebra $ A $
is isomorphic to one defined by a quiver with relations if and only if $ A $
is split basic. Thus, if $ k $
is algebraically closed, then any finite-dimensional $ k $-
algebra is Morita equivalent to one defined by a quiver with relations. All representation-finite and certain minimal representation-infinite $ k $-
algebras over an algebraically closed field are defined by quivers with relations of the form $ \omega $,
and $ \omega _ {1} - \omega _ {2} $,
where $ \omega , \omega _ {1} , \omega _ {2} $
are paths (the multiplicative basis theorem, [a2]); this shows that the study of representation-finite algebras is a purely combinatorial problem; it was a decisive step for the proof of the second Brauer–Thrall conjecture (see Representation of an associative algebra).
The representation theory of quivers has been developed in order to deal effectively with certain types of matrix problems over a fixed field $ k $
as they arise in algebra, geometry and analysis. Typical tame quivers are the Kronecker quiver
$$
\circ \ \ \circ ,
$$
its representations are just the matrix pencils (pairs of matrices $ A , B $
of the same size, considered with respect to the equivalence relation: $ ( A, B) \sim ( A ^ \prime , B ^ \prime ) $
if and only if there are invertible matrices $ P , Q $
with $ A ^ \prime = PAQ $,
$ B ^ \prime = PBQ $),
and the four-subspace quiver
$$
\begin{array}{ll}
\circ \ &{} \\
\circ &{} \\
{} &\circ. \\
\circ &{} \\
\circ &{} \\
\end{array}
$$
In general, the representation theory of the $ n $-
subspace quiver
$$
\begin{array}{ll}
\circ \ &{} \\
. &{} \\
. &\circ . \\
. &{} \\
\circ &{} \\
\end{array}
$$
deals with the mutual position of $ n $-
subspaces in a vector space.
Using the language of quivers, these problems are transformed to problems dealing with finite-dimensional split basic $ k $-
algebras.
In order to deal with an arbitrary finite-dimensional $ k $-
algebra one needs the notion of a species (instead of a quiver), see [a5]. In this way, one deals with vector space problems which involve different fields. The representation-finite species are those corresponding to arbitrary Dynkin diagrams $ ( A _ {n} , B _ {n} , C _ {n} \dots G _ {2} ) $,
the tame ones correspond to the Euclidean diagrams [a9].
References
[a1] | I.N. Bernstein, I.M. Gel'fand, V.A. Ponomarev, "Coxeter functors and Gabriel's theorem" Russian Math. Surveys , 28 : 2 (1973) pp. 17–32 Uspekhi Mat. Nauk , 28 : 2 (1973) pp. 19–34 |
[a2] | R. Bautista, P. Gabriel, A. Rojter, L. Salmeron, "Representation-finite algebras and multiplicative basis" Invent. Math. , 81 (1985) pp. 217–285 |
[a3] | P. Donovan, M.R. Freislich, "The representation of finite graphs and associated algebras" Carleton Lecture Notes , 5 (1973) |
[a4] | P. Gabriel, "Unzerlegbare Darstellungen I" Manuscripta Math. , 6 (1972) pp. 71–103 |
[a5] | P. Gabriel, "Indecomposable representations II" , Symp. Math. INDAM (Rome, 1971) , XI , Acad. Press (1973) pp. 81–104 |
[a6] | V.G. Kac, "Infinite dimensional Lie algebras" , Cambridge Univ. Press (1985) |
[a7] | V.G. Kac, "Infinite root systems, representations of graphs and invariant theory" Invent. Math. , 56 (1980) pp. 57–92 |
[a8] | L.A. Nazarova, "Representations of quivers of infinite type" Math. USSR Izv. , 7 (1973) pp. 749–792 Izv. Akad. Nauk SSSR Ser. Mat. , 37 (1973) pp. 752–791 |
[a9] | V. Dlab, C.M. Ringel, "Indecomposable representations of graphs and algebras" Memoirs Amer. Math. Soc. , 173 (1976) |