|
|
Line 1: |
Line 1: |
− | A [[Continuous mapping|continuous mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718101.png" /> of the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718102.png" /> into a [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718103.png" />. The points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718105.png" /> are called the initial and the final points of the path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718106.png" />. Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718107.png" />, the path defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718108.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p0718109.png" />, is called the path inverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181010.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181011.png" />. Given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181013.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181014.png" />, the path defined by the formula
| + | <!-- |
| + | p0718101.png |
| + | $#A+1 = 41 n = 0 |
| + | $#C+1 = 41 : ~/encyclopedia/old_files/data/P071/P.0701810 Path |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181015.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | is called the composite of the paths <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181017.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181018.png" />. In a [[Path-connected space|path-connected space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181019.png" /> with distinguished point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181020.png" />, the set of all paths with initial point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181021.png" /> forms the [[Path space|path space]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181022.png" />.
| + | A [[Continuous mapping|continuous mapping]] $ f $ |
| + | of the interval $ [ 0 , 1 ] $ |
| + | into a [[Topological space|topological space]] $ X $. |
| + | The points $ f ( 0) $ |
| + | and $ f ( 1) $ |
| + | are called the initial and the final points of the path $ f $. |
| + | Given $ f $, |
| + | the path defined by the formula $ t \rightarrow f ( 1- t ) $, |
| + | $ t \in [ 0 , 1 ] $, |
| + | is called the path inverse to $ f $ |
| + | and is denoted by $ f ^ { - 1 } $. |
| + | Given $ f _ {1} $ |
| + | and $ f _ {2} $ |
| + | with $ f _ {1} ( 1) = f _ {2} ( 0) $, |
| + | the path defined by the formula |
| | | |
| + | $$ |
| + | t \rightarrow \left \{ |
| + | \begin{array}{ll} |
| + | {f _ {1} ( 2t ) , } &{ t _ {2} \leq 1/2 , } \\ |
| + | {f( 2t- 1), } &{ t \geq 1/2 , } \\ |
| + | \end{array} |
| | | |
| + | \right .$$ |
| + | |
| + | is called the composite of the paths $ f _ {1} $ |
| + | and $ f _ {2} $ |
| + | and is denoted by $ f _ {1} f _ {2} $. |
| + | In a [[Path-connected space|path-connected space]] $ X $ |
| + | with distinguished point $ * $, |
| + | the set of all paths with initial point $ * $ |
| + | forms the [[Path space|path space]] of $ X $. |
| | | |
| ====Comments==== | | ====Comments==== |
− | Generally one is interested not so much in the individual paths in a space as in the homotopy classes thereof; if one factors by the equivalence relation of homotopy relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181023.png" />, the composition defined above becomes associative, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181024.png" /> becomes a genuine inverse to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181025.png" />. See [[Fundamental groupoid|Fundamental groupoid]]. | + | Generally one is interested not so much in the individual paths in a space as in the homotopy classes thereof; if one factors by the equivalence relation of homotopy relative to $ \{ 0, 1 \} $, |
| + | the composition defined above becomes associative, and $ f ^ { - 1 } $ |
| + | becomes a genuine inverse to $ f $. |
| + | See [[Fundamental groupoid|Fundamental groupoid]]. |
| | | |
− | More precisely, one may define a path as being any continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181026.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181027.png" /> is called the length of the path <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181028.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181030.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181031.png" /> of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181033.png" />, are composed to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181034.png" />, taking <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181035.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181037.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181038.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181039.png" /> has length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181040.png" />) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071810/p07181041.png" />. This composition is associative (not only homotopy associative). | + | More precisely, one may define a path as being any continuous mapping $ f: [ 0, r] \rightarrow X $, |
| + | where $ r \geq 0 $ |
| + | is called the length of the path $ f $. |
| + | Then $ f _ {1} $ |
| + | and $ f _ {2} $, |
| + | with $ f _ {1} $ |
| + | of length $ r $ |
| + | and $ f _ {2} ( 0) = f _ {1} ( r) $, |
| + | are composed to $ f _ {1} f _ {2} $, |
| + | taking $ t \leq r $ |
| + | to $ f _ {1} ( t) $ |
| + | and $ t $ |
| + | in $ [ r, r+ s] $( |
| + | where $ f _ {2} $ |
| + | has length $ s $) |
| + | to $ f _ {2} ( t- r) $. |
| + | This composition is associative (not only homotopy associative). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1965)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1965)</TD></TR></table> |
A continuous mapping $ f $
of the interval $ [ 0 , 1 ] $
into a topological space $ X $.
The points $ f ( 0) $
and $ f ( 1) $
are called the initial and the final points of the path $ f $.
Given $ f $,
the path defined by the formula $ t \rightarrow f ( 1- t ) $,
$ t \in [ 0 , 1 ] $,
is called the path inverse to $ f $
and is denoted by $ f ^ { - 1 } $.
Given $ f _ {1} $
and $ f _ {2} $
with $ f _ {1} ( 1) = f _ {2} ( 0) $,
the path defined by the formula
$$
t \rightarrow \left \{
\begin{array}{ll}
{f _ {1} ( 2t ) , } &{ t _ {2} \leq 1/2 , } \\
{f( 2t- 1), } &{ t \geq 1/2 , } \\
\end{array}
\right .$$
is called the composite of the paths $ f _ {1} $
and $ f _ {2} $
and is denoted by $ f _ {1} f _ {2} $.
In a path-connected space $ X $
with distinguished point $ * $,
the set of all paths with initial point $ * $
forms the path space of $ X $.
Generally one is interested not so much in the individual paths in a space as in the homotopy classes thereof; if one factors by the equivalence relation of homotopy relative to $ \{ 0, 1 \} $,
the composition defined above becomes associative, and $ f ^ { - 1 } $
becomes a genuine inverse to $ f $.
See Fundamental groupoid.
More precisely, one may define a path as being any continuous mapping $ f: [ 0, r] \rightarrow X $,
where $ r \geq 0 $
is called the length of the path $ f $.
Then $ f _ {1} $
and $ f _ {2} $,
with $ f _ {1} $
of length $ r $
and $ f _ {2} ( 0) = f _ {1} ( r) $,
are composed to $ f _ {1} f _ {2} $,
taking $ t \leq r $
to $ f _ {1} ( t) $
and $ t $
in $ [ r, r+ s] $(
where $ f _ {2} $
has length $ s $)
to $ f _ {2} ( t- r) $.
This composition is associative (not only homotopy associative).
References
[a1] | P.J. Hilton, S. Wylie, "Homology theory. An introduction to algebraic topology" , Cambridge Univ. Press (1965) |