Namespaces
Variants
Actions

Difference between revisions of "Wiener integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
w0979201.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/W097/W.0907920 Wiener integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An abstract integral of Lebesgue type over sets in an infinite-dimensional function space of functionals defined on these sets. Introduced by N. Wiener in the nineteentwenties in connection with problems on [[Brownian motion|Brownian motion]] [[#References|[1]]], [[#References|[2]]].
 
An abstract integral of Lebesgue type over sets in an infinite-dimensional function space of functionals defined on these sets. Introduced by N. Wiener in the nineteentwenties in connection with problems on [[Brownian motion|Brownian motion]] [[#References|[1]]], [[#References|[2]]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979201.png" /> be the vector space of continuous real-valued functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979202.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979203.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979204.png" />, with norm
+
Let $  C _ {0} $
 +
be the vector space of continuous real-valued functions $  x $
 +
defined on $  [ 0, 1] $
 +
such that $  x( 0) = 0 $,  
 +
with norm
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979205.png" /></td> </tr></table>
+
$$
 +
\| x \|  = \max _ {t \in [ 0, 1] }  | x ( t) |.
 +
$$
  
 
The set
 
The set
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979206.png" /></td> </tr></table>
+
$$
 +
= \{ {x \in C _ {0} } : {
 +
a _ {i} < x ( t _ {i} ) \leq  b _ {i} ,\
 +
0 = t _ {0} < t _ {1} < \dots < t _ {n} = 1 } \}
 +
$$
  
is called a quasi-interval of this space. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979208.png" /> may be equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w0979209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792010.png" />, respectively, but then the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792011.png" /> must replace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792012.png" />. The whole space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792013.png" /> is an example of a quasi-interval.
+
is called a quasi-interval of this space. Here, $  a _ {i} $
 +
and $  b _ {i} $
 +
may be equal to $  - \infty $
 +
and $  + \infty $,  
 +
respectively, but then the symbol < $
 +
must replace $  \leq  $.  
 +
The whole space $  C _ {0} = \{ {x ( t) } : {- \infty < x ( 1) < + \infty } \} $
 +
is an example of a quasi-interval.
  
The Wiener measure of a quasi-interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792014.png" /> is the number
+
The Wiener measure of a quasi-interval $  Q $
 +
is the number
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792015.png" /></td> </tr></table>
+
$$
 +
\mu _ {W} ( Q)  = \
 +
{
 +
\frac{1}{\sqrt {\pi  ^ {n} \prod _ { i = 1 } ^ { n }  ( t _ {i} - t _ {i-} 1 ) }}
 +
}
 +
\int\limits _ { a _ 1 } ^ {b _ 1 } \dots \int\limits _ { a _ n } ^ {b _ n}
 +
e ^ {- L _ {n} }  dx _ {n} \dots dx _ {1} ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792016.png" /></td> </tr></table>
+
$$
 +
L _ {n}  = \sum _ {j = 1 } ^ { n }
 +
 
 +
\frac{( x _ {j} - x _ {j-} 1 )  ^ {2} }{t _ {j} - t _ {j-} 1 }
 +
 
 +
$$
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792017.png" />. This measure extends to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792018.png" />-additive measure on the Borel field of sets generated by the quasi-intervals, known also as Wiener measure.
+
and $  x _ {j} = x ( t _ {j} ) $.  
 +
This measure extends to a $  \sigma $-
 +
additive measure on the Borel field of sets generated by the quasi-intervals, known also as Wiener measure.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792019.png" /> be a functional defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792020.png" /> that is measurable with respect to the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792021.png" />. The Lebesgue-type integral
+
Let $  F $
 +
be a functional defined on $  C _ {0} $
 +
that is measurable with respect to the measure $  \mu _ {W} $.  
 +
The Lebesgue-type integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792022.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { C _ 0 } F ( x)  d \mu _ {W} ( x)
 +
$$
  
is known as the Wiener integral, or as the integral with respect to the Wiener measure, of the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792023.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792024.png" /> is measurable, then
+
is known as the Wiener integral, or as the integral with respect to the Wiener measure, of the functional $  F $.  
 +
If $  E \subset  C _ {0} $
 +
is measurable, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792025.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { E } F ( x)  d \mu _ {W} ( x)  = \
 +
\int\limits _ { C _ 0 } F ( x) \chi _ {E} ( x)  d \mu _ {W} ( x) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792026.png" /> is the characteristic function of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792027.png" />.
+
where $  \chi _ {E} $
 +
is the characteristic function of the set $  E $.
  
Wiener's integral displays several properties of the ordinary Lebesgue integral. In particular, a functional which is bounded and measurable on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792028.png" /> is integrable with respect to the Wiener measure on this set and if, in addition, the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792029.png" /> is continuous and non-negative, then
+
Wiener's integral displays several properties of the ordinary Lebesgue integral. In particular, a functional which is bounded and measurable on a set $  E $
 +
is integrable with respect to the Wiener measure on this set and if, in addition, the functional $  F $
 +
is continuous and non-negative, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792030.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { C _ 0 } F ( x)  d \mu _ {W} ( x) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792031.png" /></td> </tr></table>
+
$$
 +
= \
 +
\lim\limits _ {n \rightarrow \infty } 
 +
\frac{1}{\sqrt { {\pi  ^ {n} \prod _ {i = 1 } ^ { n }  ( t _ {i} - t _ {i-} 1 ) } }}
 +
\int\limits
 +
_ { \mathbf R }  ^ {n}
 +
\frac{F _ {n} ( x _ {1} \dots x _ {n} ) }{e  ^ {L} _ {n} }
 +
  dx _ {1} \dots dx _ {n} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792032.png" /> is the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792033.png" /> at linear interpolation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792034.png" /> between points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792035.png" />.
+
where $  F _ {n} ( x _ {1} \dots x _ {n} ) $
 +
is the value of $  F $
 +
at linear interpolation of $  x( t) $
 +
between points $  ( t _ {i} , x _ {i} \equiv x( t _ {i} )) $.
  
 
The computation of a Wiener integral presents considerable difficulties, even for the simplest functionals. The task may sometimes be reduced to solving a single differential equation [[#References|[1]]].
 
The computation of a Wiener integral presents considerable difficulties, even for the simplest functionals. The task may sometimes be reduced to solving a single differential equation [[#References|[1]]].
Line 45: Line 115:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Koval'chik,  "The Wiener integral"  ''Russian Math. Surveys'' , '''18''' :  1  (1963)  pp. 97–134  ''Uspekhi Mat. Nauk'' , '''18''' :  1  (1963)  pp. 97–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.E. Shilov,  "Integration in infinite dimensional spaces and the Wiener integral"  ''Russ. Math. Surveys'' , '''18''' :  2  (1963)  pp. 99–120  ''Uspekhi Mat. Nauk'' , '''2'''  (1963)  pp. 99–120</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Koval'chik,  "The Wiener integral"  ''Russian Math. Surveys'' , '''18''' :  1  (1963)  pp. 97–134  ''Uspekhi Mat. Nauk'' , '''18''' :  1  (1963)  pp. 97–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.E. Shilov,  "Integration in infinite dimensional spaces and the Wiener integral"  ''Russ. Math. Surveys'' , '''18''' :  2  (1963)  pp. 99–120  ''Uspekhi Mat. Nauk'' , '''2'''  (1963)  pp. 99–120</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Further references on the computation of Wiener integrals in the sense described above are [[#References|[a1]]] and [[#References|[a2]]]. In the Western literature, the term  "Wiener integral"  normally refers to the [[Stochastic integral|stochastic integral]] of a deterministic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792036.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792037.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792038.png" />, with respect to the [[Wiener process|Wiener process]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792039.png" /> defined on a probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792040.png" />. This is denoted by
+
Further references on the computation of Wiener integrals in the sense described above are [[#References|[a1]]] and [[#References|[a2]]]. In the Western literature, the term  "Wiener integral"  normally refers to the [[Stochastic integral|stochastic integral]] of a deterministic function $  f $
 +
such that $  f \in L _ {2} [ 0, t] $
 +
for each $  t \in \mathbf R _ {+} $,  
 +
with respect to the [[Wiener process|Wiener process]] $  X( t) $
 +
defined on a probability space $  ( \Omega , {\mathcal F} , P) $.  
 +
This is denoted by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792041.png" /></td> </tr></table>
+
$$
 +
I _ {t} ( f  )  = \int\limits _ { 0 } ^ { t }  f( s)  dX( s) ,
 +
$$
  
and is defined as follows. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792042.png" /> is a simple function, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792043.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792044.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792046.png" />, then
+
and is defined as follows. If $  f $
 +
is a simple function, i.e. $  f( s) = a _ {i} $
 +
for $  s \in [ t _ {t-} 1 , t _ {i} ) $,  
 +
where $  a _ {i} \in \mathbf R $
 +
and  $  0 = t _ {0} < t _ {1} < \dots < t _ {n} = t $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792047.png" /></td> </tr></table>
+
$$
 +
I _ {t} ( f  )  = \sum _ { n= } 1 ^ { n }  a _ {i} ( X( t _ {i} ) -
 +
X( t _ {i-} 1 )) .
 +
$$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792048.png" /> denote the set of simple functions. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792049.png" />, a computation shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792051.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792052.png" /> is an inner-product preserving mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792053.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792054.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792055.png" /> there exists a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792056.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792057.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792058.png" /> is then a Cauchy sequence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792059.png" />, and one defines
+
Let $  S $
 +
denote the set of simple functions. For $  f , g \in S $,  
 +
a computation shows that $  {\mathsf E} I _ {t} ( f  ) = 0 $,  
 +
$  {\mathsf E} ( I _ {t} ( f  ) I _ {t} ( g)) = \int _ {0}  ^ {t} f( s) g( s)  ds $,  
 +
i.e. $  f \mapsto I _ {t} ( f  ) $
 +
is an inner-product preserving mapping from $  L _ {2} [ 0, t] $
 +
to $  L _ {2} ( \Omega , {\mathcal F} , P ) $.  
 +
For any $  f \in L _ {2} [ 0, t] $
 +
there exists a sequence $  f _ {n} \in S $
 +
such that $  f _ {n} \rightarrow f $.  
 +
$  \{ I _ {t} ( f _ {n} ) \} $
 +
is then a Cauchy sequence in $  L _ {2} ( \Omega , {\mathcal F} , P) $,  
 +
and one defines
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792060.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^ { t }  f( s)  dX( s)  = \lim\limits _ {n \rightarrow \infty }  I _ {t} ( f _ {n} ).
 +
$$
  
 
Notable features of this construction are as follows.
 
Notable features of this construction are as follows.
  
It is possible to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792061.png" /> simultaneously for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792062.png" /> and to obtain a version which is a Gaussian martingale with continuous sample paths
+
It is possible to define $  I _ {t} ( f  ) $
 +
simultaneously for all $  t \geq  0 $
 +
and to obtain a version which is a Gaussian martingale with continuous sample paths
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792063.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm sp} \{ {X ( s) } : {0 \leq  s \leq  t } \}
 +
= \
 +
\{ {I _ {t} ( f  ) } : {f \in L _ {2} [ 0, t ] } \}
 +
,
 +
$$
  
where  "sp"  denotes the closed linear span in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097920/w09792064.png" />. Information on the Wiener integral in this sense is given in [[#References|[a3]]], [[#References|[a4]]].
+
where  "sp"  denotes the closed linear span in $  L _ {2} ( \Omega , {\mathcal F} , P ) $.  
 +
Information on the Wiener integral in this sense is given in [[#References|[a3]]], [[#References|[a4]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.J. Chorin,  "Accurate evaluation of Wiener integrals"  ''Math. Comp.'' , '''27'''  (1973)  pp. 1–15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.L. Blankenschip,  J.S. Baras,  "Accurate evaluation of stochastic Wiener integrals with applications to scattering in random media and to nonlinear filtering"  ''SIAM J. Appl. Math.'' , '''41'''  (1981)  pp. 518–552</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.H.A. Davis,  "Linear estimation and stochastic control" , Chapman &amp; Hall  (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.S. Liptser,  A.N. Shiryaev,  "Statistics of random processes" , '''I''' , Springer  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. Yeh,  "Stochastic processes and the Wiener integral" , M. Dekker  (1973)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  B. Simon,  "Functional integration and quantum physics" , Acad. Press  (1979)  pp. 4–6</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L.C.G. Rogers,  D. Williams,  "Diffusions, Markov processes, and martingales" , '''2. Itô calculus''' , Wiley  (1987)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  H. Bauer,  "Probability theory and elements of measure theory" , Holt, Rinehart &amp; Winston  (1972)  pp. Chapt. 11  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.J. Chorin,  "Accurate evaluation of Wiener integrals"  ''Math. Comp.'' , '''27'''  (1973)  pp. 1–15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.L. Blankenschip,  J.S. Baras,  "Accurate evaluation of stochastic Wiener integrals with applications to scattering in random media and to nonlinear filtering"  ''SIAM J. Appl. Math.'' , '''41'''  (1981)  pp. 518–552</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  M.H.A. Davis,  "Linear estimation and stochastic control" , Chapman &amp; Hall  (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.S. Liptser,  A.N. Shiryaev,  "Statistics of random processes" , '''I''' , Springer  (1977)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  J. Yeh,  "Stochastic processes and the Wiener integral" , M. Dekker  (1973)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  B. Simon,  "Functional integration and quantum physics" , Acad. Press  (1979)  pp. 4–6</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  L.C.G. Rogers,  D. Williams,  "Diffusions, Markov processes, and martingales" , '''2. Itô calculus''' , Wiley  (1987)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  H. Bauer,  "Probability theory and elements of measure theory" , Holt, Rinehart &amp; Winston  (1972)  pp. Chapt. 11  (Translated from German)</TD></TR></table>

Latest revision as of 08:29, 6 June 2020


An abstract integral of Lebesgue type over sets in an infinite-dimensional function space of functionals defined on these sets. Introduced by N. Wiener in the nineteentwenties in connection with problems on Brownian motion [1], [2].

Let $ C _ {0} $ be the vector space of continuous real-valued functions $ x $ defined on $ [ 0, 1] $ such that $ x( 0) = 0 $, with norm

$$ \| x \| = \max _ {t \in [ 0, 1] } | x ( t) |. $$

The set

$$ Q = \{ {x \in C _ {0} } : { a _ {i} < x ( t _ {i} ) \leq b _ {i} ,\ 0 = t _ {0} < t _ {1} < \dots < t _ {n} = 1 } \} $$

is called a quasi-interval of this space. Here, $ a _ {i} $ and $ b _ {i} $ may be equal to $ - \infty $ and $ + \infty $, respectively, but then the symbol $ < $ must replace $ \leq $. The whole space $ C _ {0} = \{ {x ( t) } : {- \infty < x ( 1) < + \infty } \} $ is an example of a quasi-interval.

The Wiener measure of a quasi-interval $ Q $ is the number

$$ \mu _ {W} ( Q) = \ { \frac{1}{\sqrt {\pi ^ {n} \prod _ { i = 1 } ^ { n } ( t _ {i} - t _ {i-} 1 ) }} } \int\limits _ { a _ 1 } ^ {b _ 1 } \dots \int\limits _ { a _ n } ^ {b _ n} e ^ {- L _ {n} } dx _ {n} \dots dx _ {1} , $$

where

$$ L _ {n} = \sum _ {j = 1 } ^ { n } \frac{( x _ {j} - x _ {j-} 1 ) ^ {2} }{t _ {j} - t _ {j-} 1 } $$

and $ x _ {j} = x ( t _ {j} ) $. This measure extends to a $ \sigma $- additive measure on the Borel field of sets generated by the quasi-intervals, known also as Wiener measure.

Let $ F $ be a functional defined on $ C _ {0} $ that is measurable with respect to the measure $ \mu _ {W} $. The Lebesgue-type integral

$$ \int\limits _ { C _ 0 } F ( x) d \mu _ {W} ( x) $$

is known as the Wiener integral, or as the integral with respect to the Wiener measure, of the functional $ F $. If $ E \subset C _ {0} $ is measurable, then

$$ \int\limits _ { E } F ( x) d \mu _ {W} ( x) = \ \int\limits _ { C _ 0 } F ( x) \chi _ {E} ( x) d \mu _ {W} ( x) , $$

where $ \chi _ {E} $ is the characteristic function of the set $ E $.

Wiener's integral displays several properties of the ordinary Lebesgue integral. In particular, a functional which is bounded and measurable on a set $ E $ is integrable with respect to the Wiener measure on this set and if, in addition, the functional $ F $ is continuous and non-negative, then

$$ \int\limits _ { C _ 0 } F ( x) d \mu _ {W} ( x) = $$

$$ = \ \lim\limits _ {n \rightarrow \infty } \frac{1}{\sqrt { {\pi ^ {n} \prod _ {i = 1 } ^ { n } ( t _ {i} - t _ {i-} 1 ) } }} \int\limits _ { \mathbf R } ^ {n} \frac{F _ {n} ( x _ {1} \dots x _ {n} ) }{e ^ {L} _ {n} } dx _ {1} \dots dx _ {n} , $$

where $ F _ {n} ( x _ {1} \dots x _ {n} ) $ is the value of $ F $ at linear interpolation of $ x( t) $ between points $ ( t _ {i} , x _ {i} \equiv x( t _ {i} )) $.

The computation of a Wiener integral presents considerable difficulties, even for the simplest functionals. The task may sometimes be reduced to solving a single differential equation [1].

There is a method by which Wiener's integral may be approximately computed through approximating it by finite-dimensional Stieltjes integrals of a high multiplicity (cf. Stieltjes integral).

References

[1] I.M. Koval'chik, "The Wiener integral" Russian Math. Surveys , 18 : 1 (1963) pp. 97–134 Uspekhi Mat. Nauk , 18 : 1 (1963) pp. 97–134
[2] G.E. Shilov, "Integration in infinite dimensional spaces and the Wiener integral" Russ. Math. Surveys , 18 : 2 (1963) pp. 99–120 Uspekhi Mat. Nauk , 2 (1963) pp. 99–120

Comments

Further references on the computation of Wiener integrals in the sense described above are [a1] and [a2]. In the Western literature, the term "Wiener integral" normally refers to the stochastic integral of a deterministic function $ f $ such that $ f \in L _ {2} [ 0, t] $ for each $ t \in \mathbf R _ {+} $, with respect to the Wiener process $ X( t) $ defined on a probability space $ ( \Omega , {\mathcal F} , P) $. This is denoted by

$$ I _ {t} ( f ) = \int\limits _ { 0 } ^ { t } f( s) dX( s) , $$

and is defined as follows. If $ f $ is a simple function, i.e. $ f( s) = a _ {i} $ for $ s \in [ t _ {t-} 1 , t _ {i} ) $, where $ a _ {i} \in \mathbf R $ and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} = t $, then

$$ I _ {t} ( f ) = \sum _ { n= } 1 ^ { n } a _ {i} ( X( t _ {i} ) - X( t _ {i-} 1 )) . $$

Let $ S $ denote the set of simple functions. For $ f , g \in S $, a computation shows that $ {\mathsf E} I _ {t} ( f ) = 0 $, $ {\mathsf E} ( I _ {t} ( f ) I _ {t} ( g)) = \int _ {0} ^ {t} f( s) g( s) ds $, i.e. $ f \mapsto I _ {t} ( f ) $ is an inner-product preserving mapping from $ L _ {2} [ 0, t] $ to $ L _ {2} ( \Omega , {\mathcal F} , P ) $. For any $ f \in L _ {2} [ 0, t] $ there exists a sequence $ f _ {n} \in S $ such that $ f _ {n} \rightarrow f $. $ \{ I _ {t} ( f _ {n} ) \} $ is then a Cauchy sequence in $ L _ {2} ( \Omega , {\mathcal F} , P) $, and one defines

$$ \int\limits _ { 0 } ^ { t } f( s) dX( s) = \lim\limits _ {n \rightarrow \infty } I _ {t} ( f _ {n} ). $$

Notable features of this construction are as follows.

It is possible to define $ I _ {t} ( f ) $ simultaneously for all $ t \geq 0 $ and to obtain a version which is a Gaussian martingale with continuous sample paths

$$ \mathop{\rm sp} \{ {X ( s) } : {0 \leq s \leq t } \} = \ \{ {I _ {t} ( f ) } : {f \in L _ {2} [ 0, t ] } \} , $$

where "sp" denotes the closed linear span in $ L _ {2} ( \Omega , {\mathcal F} , P ) $. Information on the Wiener integral in this sense is given in [a3], [a4].

References

[a1] A.J. Chorin, "Accurate evaluation of Wiener integrals" Math. Comp. , 27 (1973) pp. 1–15
[a2] G.L. Blankenschip, J.S. Baras, "Accurate evaluation of stochastic Wiener integrals with applications to scattering in random media and to nonlinear filtering" SIAM J. Appl. Math. , 41 (1981) pp. 518–552
[a3] M.H.A. Davis, "Linear estimation and stochastic control" , Chapman & Hall (1977)
[a4] R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , I , Springer (1977) (Translated from Russian)
[a5] J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973)
[a6] B. Simon, "Functional integration and quantum physics" , Acad. Press (1979) pp. 4–6
[a7] L.C.G. Rogers, D. Williams, "Diffusions, Markov processes, and martingales" , 2. Itô calculus , Wiley (1987)
[a8] H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. Chapt. 11 (Translated from German)
How to Cite This Entry:
Wiener integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener_integral&oldid=49219
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article