Difference between revisions of "Weierstrass conditions (for a variational extremum)"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | w0974001.png | ||
+ | $#A+1 = 24 n = 0 | ||
+ | $#C+1 = 24 : ~/encyclopedia/old_files/data/W097/W.0907400 Weierstrass conditions (for a variational extremum) | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Necessary and (partially) sufficient conditions for a strong extremum in the classical calculus of variations (cf. [[Variational calculus|Variational calculus]]). Proposed in 1879 by K. Weierstrass. | Necessary and (partially) sufficient conditions for a strong extremum in the classical calculus of variations (cf. [[Variational calculus|Variational calculus]]). Proposed in 1879 by K. Weierstrass. | ||
Weierstrass' necessary condition: For the functional | Weierstrass' necessary condition: For the functional | ||
− | + | $$ | |
+ | J( x) = \int\limits _ { t _ {0} } ^ { {t _ 1 } } | ||
+ | L( t, x( t), \dot{x} ( t)) dt,\ \ | ||
+ | L: \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R , | ||
+ | $$ | ||
− | to attain a strong local minimum on the extremal | + | to attain a strong local minimum on the extremal $ x _ {0} ( t) $, |
+ | it is necessary that the inequality | ||
− | + | $$ | |
+ | {\mathcal E} ( t, x _ {0} ( t), \dot{x} _ {0} ( t), \xi ) \geq 0, | ||
+ | $$ | ||
− | where | + | where $ {\mathcal E} $ |
+ | is the [[Weierstrass E-function|Weierstrass $ {\mathcal E} $- | ||
+ | function]], be satisfied for all $ t $, | ||
+ | $ t _ {0} \leq t \leq t _ {1} $, | ||
+ | and all $ \xi \in \mathbf C ^ {n} $. | ||
+ | This condition may be expressed in terms of the function | ||
− | + | $$ | |
+ | \Pi ( t, x, p, u) = ( p, u) - L ( t, x, u) | ||
+ | $$ | ||
− | (cf. [[Pontryagin maximum principle|Pontryagin maximum principle]]). The Weierstrass condition ( | + | (cf. [[Pontryagin maximum principle|Pontryagin maximum principle]]). The Weierstrass condition ( $ {\mathcal E} \geq 0 $ |
+ | on the extremal $ x _ {0} ( t) $) | ||
+ | is equivalent to saying that the function $ \Pi ( t, x _ {0} ( t), p _ {0} ( t), u) $, | ||
+ | where $ p _ {0} ( t) = L _ {\dot{x} } ( t, x _ {0} ( t), \dot{x} _ {0} ( t)) $, | ||
+ | attains a maximum in $ u $ | ||
+ | for $ u = {\dot{x} _ {0} } ( t) $. | ||
+ | Thus, Weierstrass' necessary condition is a special case of the Pontryagin maximum principle. | ||
Weierstrass' sufficient condition: For the functional | Weierstrass' sufficient condition: For the functional | ||
− | + | $$ | |
+ | J ( x) = \int\limits _ { t _ {0} } ^ { {t _ 1 } } | ||
+ | L ( t, x( t), \dot{x} ( t)) dt,\ \ | ||
+ | L : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R , | ||
+ | $$ | ||
− | to attain a strong local minimum on the vector function | + | to attain a strong local minimum on the vector function $ x _ {0} ( t) $, |
+ | it is sufficient that there exists a vector-valued field slope function $ U( t, x) $( | ||
+ | geodesic slope) (cf. [[Hilbert invariant integral|Hilbert invariant integral]]) in a neighbourhood $ G $ | ||
+ | of the curve $ x _ {0} ( t) $, | ||
+ | for which | ||
− | + | $$ | |
+ | \dot{x} _ {0} ( t) = U( t, x _ {0} ( t)) | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | {\mathcal E} ( t, x, U( t, x), \xi ) \geq 0 | ||
+ | $$ | ||
− | for all | + | for all $ ( t, x) \in G $ |
+ | and any vector $ \xi \in \mathbf R ^ {n} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Wiley (1962) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Wiley (1962) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:28, 6 June 2020
Necessary and (partially) sufficient conditions for a strong extremum in the classical calculus of variations (cf. Variational calculus). Proposed in 1879 by K. Weierstrass.
Weierstrass' necessary condition: For the functional
$$ J( x) = \int\limits _ { t _ {0} } ^ { {t _ 1 } } L( t, x( t), \dot{x} ( t)) dt,\ \ L: \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R , $$
to attain a strong local minimum on the extremal $ x _ {0} ( t) $, it is necessary that the inequality
$$ {\mathcal E} ( t, x _ {0} ( t), \dot{x} _ {0} ( t), \xi ) \geq 0, $$
where $ {\mathcal E} $ is the Weierstrass $ {\mathcal E} $- function, be satisfied for all $ t $, $ t _ {0} \leq t \leq t _ {1} $, and all $ \xi \in \mathbf C ^ {n} $. This condition may be expressed in terms of the function
$$ \Pi ( t, x, p, u) = ( p, u) - L ( t, x, u) $$
(cf. Pontryagin maximum principle). The Weierstrass condition ( $ {\mathcal E} \geq 0 $ on the extremal $ x _ {0} ( t) $) is equivalent to saying that the function $ \Pi ( t, x _ {0} ( t), p _ {0} ( t), u) $, where $ p _ {0} ( t) = L _ {\dot{x} } ( t, x _ {0} ( t), \dot{x} _ {0} ( t)) $, attains a maximum in $ u $ for $ u = {\dot{x} _ {0} } ( t) $. Thus, Weierstrass' necessary condition is a special case of the Pontryagin maximum principle.
Weierstrass' sufficient condition: For the functional
$$ J ( x) = \int\limits _ { t _ {0} } ^ { {t _ 1 } } L ( t, x( t), \dot{x} ( t)) dt,\ \ L : \mathbf R \times \mathbf R ^ {n} \times \mathbf R ^ {n} \rightarrow \mathbf R , $$
to attain a strong local minimum on the vector function $ x _ {0} ( t) $, it is sufficient that there exists a vector-valued field slope function $ U( t, x) $( geodesic slope) (cf. Hilbert invariant integral) in a neighbourhood $ G $ of the curve $ x _ {0} ( t) $, for which
$$ \dot{x} _ {0} ( t) = U( t, x _ {0} ( t)) $$
and
$$ {\mathcal E} ( t, x, U( t, x), \xi ) \geq 0 $$
for all $ ( t, x) \in G $ and any vector $ \xi \in \mathbf R ^ {n} $.
References
[1] | M.A. Lavrent'ev, L.A. Lyusternik, "A course in variational calculus" , Moscow-Leningrad (1950) (In Russian) |
[2] | G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947) |
[3] | L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Wiley (1962) (Translated from Russian) |
Comments
See also Weierstrass–Erdmann corner conditions, for necessary conditions at a corner of an extremal.
References
[a1] | I.M. Gel'fand, S.V. Fomin, "Calculus of variations" , Prentice-Hall (1963) (Translated from Russian) |
[a2] | L. Cesari, "Optimization - Theory and applications" , Springer (1983) |
Weierstrass conditions (for a variational extremum). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_conditions_(for_a_variational_extremum)&oldid=49189