Namespaces
Variants
Actions

Difference between revisions of "Tricomi problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The problem related to the existence of solutions for differential equations of mixed elliptic-hyperbolic type with two independent variables in an open domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941901.png" /> of special shape. The domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941902.png" /> can be decomposed into the union of two subdomains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941903.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941904.png" /> by a smooth simple curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941905.png" /> whose end points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941906.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941907.png" /> are different points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941908.png" />. The equation is elliptic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t0941909.png" />, hyperbolic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419010.png" />, and degenerates to parabolic on the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419011.png" />. The boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419012.png" /> is the union of the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419013.png" /> and a smooth simple curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419014.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419015.png" /> is the union of characteristics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419017.png" /> and the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419018.png" />. The desired solution must take prescribed data on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419019.png" /> and on only one of the characteristics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419021.png" /> (see [[Mixed-type differential equation|Mixed-type differential equation]]).
+
<!--
 +
t0941901.png
 +
$#A+1 = 62 n = 0
 +
$#C+1 = 62 : ~/encyclopedia/old_files/data/T094/T.0904190 Tricomi problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The problem related to the existence of solutions for differential equations of mixed elliptic-hyperbolic type with two independent variables in an open domain $  \Omega $
 +
of special shape. The domain $  \Omega $
 +
can be decomposed into the union of two subdomains $  \Omega _ {1} $
 +
and $  \Omega _ {2} $
 +
by a smooth simple curve $  AB $
 +
whose end points $  A $
 +
and $  B $
 +
are different points of $  \partial  \Omega $.  
 +
The equation is elliptic in $  \Omega _ {1} $,  
 +
hyperbolic in $  \Omega _ {2} $,  
 +
and degenerates to parabolic on the curve $  AB $.  
 +
The boundary $  \partial  \Omega _ {1} $
 +
is the union of the curve $  AB $
 +
and a smooth simple curve $  \sigma $,  
 +
while $  \partial  \Omega _ {2} $
 +
is the union of characteristics $  AC $
 +
and $  BC $
 +
and the curve $  AB $.  
 +
The desired solution must take prescribed data on $  \sigma $
 +
and on only one of the characteristics $  AC $
 +
and $  BC $(
 +
see [[Mixed-type differential equation|Mixed-type differential equation]]).
  
 
The Tricomi problem for the [[Tricomi equation|Tricomi equation]]
 
The Tricomi problem for the [[Tricomi equation|Tricomi equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
Tu  \equiv \
 +
yu _ {xx} +
 +
u _ {yy}  = 0
 +
$$
  
was first posed and studied by F. Tricomi [[#References|[1]]], [[#References|[2]]]. The domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419023.png" /> is bounded by a smooth curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419024.png" /> with end points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419026.png" /> and characteristics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419028.png" />:
+
was first posed and studied by F. Tricomi [[#References|[1]]], [[#References|[2]]]. The domain $  \Omega $
 +
is bounded by a smooth curve $  \sigma \subset  \{ {( x, y) } : {y = 0 } \} $
 +
with end points $  A ( 0, 0) $,
 +
$  B ( 1, 0) $
 +
and characteristics $  AC $
 +
and $  BC $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419029.png" /></td> </tr></table>
+
$$
 +
AC : = {
 +
\frac{2}{3}
 +
} (- y)  ^ {3/2} ,\ \
 +
BC : 1 - = {
 +
\frac{2}{3}
 +
} (- y)  ^ {3/2} .
 +
$$
  
Under specified restrictions on the smoothness of the given functions and the behaviour of the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419030.png" /> of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419031.png" /> at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419033.png" />, the Tricomi problem
+
Under specified restrictions on the smoothness of the given functions and the behaviour of the derivative $  u _ {y} $
 +
of the solution $  u $
 +
at the points $  A $
 +
and $  B $,  
 +
the Tricomi problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
u | _  \sigma  = \phi ,\  u | _ {AC }  = \psi
 +
$$
  
for equation (1) reduces to finding the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419035.png" /> of equation (1) that is regular in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419036.png" /> and that satisfies the boundary conditions
+
for equation (1) reduces to finding the solution $  u = u ( x, y) $
 +
of equation (1) that is regular in the domain $  \Omega  ^ {+} = \Omega \cap \{ {( x, y) } : {y > 0 } \} $
 +
and that satisfies the boundary conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
u \mid  _  \sigma  = \phi ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419038.png" /></td> </tr></table>
+
$$
 +
u _ {y} ( x, 0= \alpha D _ {0x}  ^ {2/3} u
 +
( x, 0) + \psi _ {1} ( x),\  0 \leq  x \leq  1,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419040.png" /> is uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419042.png" /> is the fractional differentiation operator of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419043.png" /> (in the sense of Riemann–Liouville):
+
where $  \alpha = \textrm{ const } > 0 $,  
 +
$  \psi _ {1} ( x) $
 +
is uniquely determined by $  \psi $,  
 +
$  D _ {0x}  ^ {2/3} $
 +
is the fractional differentiation operator of order $  2/3 $(
 +
in the sense of Riemann–Liouville):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419044.png" /></td> </tr></table>
+
$$
 +
D _ {0x}  ^ {2/3} \tau ( x)  = \
 +
{
 +
\frac{1}{\Gamma ( 1/3) }
 +
}
 +
{
 +
\frac{d}{dx }
 +
}
 +
\int\limits _ { 0 } ^ { x }
  
and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419045.png" /> is the Euler [[Gamma-function|gamma-function]].
+
\frac{\tau ( t)  dt }{( x - t)  ^ {2/3} }
 +
,
 +
$$
  
The solution of the problem (1), (3) reduces in turn to finding the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419046.png" /> from some [[Singular integral equation|singular integral equation]]. This equation in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419047.png" /> is the curve
+
and  $  \Gamma ( z) $
 +
is the Euler [[Gamma-function|gamma-function]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419048.png" /></td> </tr></table>
+
The solution of the problem (1), (3) reduces in turn to finding the function  $  \nu ( x) = u _ {y} ( x, 0) $
 +
from some [[Singular integral equation|singular integral equation]]. This equation in the case when  $  \sigma $
 +
is the curve
 +
 
 +
$$
 +
\sigma _ {0}  = \
 +
\left \{ {
 +
( x, y) } : {
 +
\left ( x - {
 +
\frac{1}{2}
 +
} \right )  ^ {2} +
 +
{
 +
\frac{4}{9}
 +
} y  ^ {3} = {
 +
\frac{1}{4}
 +
} , y \geq  0
 +
} \right \}
 +
$$
  
 
has the form
 
has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419049.png" /></td> </tr></table>
+
$$
 +
\nu ( x) +
 +
{
 +
\frac{1}{\pi \sqrt 3 }
 +
}
 +
\int\limits _ { 0 } ^ { 1 }
 +
\left ( {
 +
\frac{t}{x}
 +
} \right )  ^ {2/3}
 +
\left (
 +
{
 +
\frac{1}{t - x }
 +
} - {
 +
\frac{1}{t + x - 2x }
 +
}
 +
\right )
 +
\nu ( t)  dt  =  f ( x),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419050.png" /> is expressed explicitly in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419051.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419052.png" />, and the integral is understood in the sense of the Cauchy principal value (see [[#References|[1]]]–[[#References|[4]]]).
+
where $  f ( x) $
 +
is expressed explicitly in terms of $  \phi $
 +
and $  \psi $,  
 +
and the integral is understood in the sense of the Cauchy principal value (see [[#References|[1]]]–[[#References|[4]]]).
  
In the proof of the uniqueness and existence of the solution of the Tricomi problem, in addition to the Bitsadze extremum principle (see [[Mixed-type differential equation|Mixed-type differential equation]]) and the method of integral equations, the so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419056.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419057.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419058.png" /> method is used, the essence of which is to construct for a given second-order differential operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419059.png" /> (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419060.png" />) with domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419061.png" />, a first-order differential operator
+
In the proof of the uniqueness and existence of the solution of the Tricomi problem, in addition to the Bitsadze extremum principle (see [[Mixed-type differential equation|Mixed-type differential equation]]) and the method of integral equations, the so-called $  a $
 +
$  b $
 +
$  c $
 +
method is used, the essence of which is to construct for a given second-order differential operator $  L $(
 +
for example, $  T $)  
 +
with domain of definition $  D ( L) $,  
 +
a first-order differential operator
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419062.png" /></td> </tr></table>
+
$$
 +
= a ( x, y)
 +
{
 +
\frac \partial {\partial  x }
 +
} +
 +
b ( x, y)
 +
{
 +
\frac \partial {\partial  y }
 +
} + c ( x, y),\ \
 +
( x, y) \in \Omega ,
 +
$$
  
 
with the property that
 
with the property that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419063.png" /></td> </tr></table>
+
$$
 +
\int\limits _  \Omega
 +
lu \cdot Lu  dx  dy  \geq  \
 +
C  \| u \|  ^ {2} \ \
 +
\textrm{ for }  \textrm{ all } \
 +
u \in D ( L),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094190/t09419065.png" /> is a certain norm (see [[#References|[5]]]).
+
where $  C = \textrm{ const } > 0 $
 +
and $  \| \cdot \| $
 +
is a certain norm (see [[#References|[5]]]).
  
 
The Tricomi problem has been generalized both to the case of mixed-type differential equations with curves of parabolic degeneracy (see [[#References|[6]]]) and to the case of equations of mixed hyperbolic-parabolic type (see [[#References|[7]]]).
 
The Tricomi problem has been generalized both to the case of mixed-type differential equations with curves of parabolic degeneracy (see [[#References|[6]]]) and to the case of equations of mixed hyperbolic-parabolic type (see [[#References|[7]]]).
Line 49: Line 188:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Tricomi,  "On second-order linear partial differential equations of mixed type" , Moscow-Leningrad  (1947)  (In Russian; translated from Italian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F.G. Tricomi,  "Equazioni a derivate parziale" , Cremonese  (1957)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.V. Bitsadze,  "Zum Problem der Gleichungen vom gemischten Typus" , Deutsch. Verlag Wissenschaft.  (1957)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.V. Bitsadse,  "Equations of mixed type" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L. Bers,  "Mathematical aspects of subsonic and transonic gas dynamics" , Wiley  (1958)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.M. Nakhushev,  "A boundary value problem for an equation of mixed type with two lines of degeneracy"  ''Soviet Math. Dokl.'' , '''7''' :  5  (1966)  pp. 1142–1145  ''Dokl. Akad. Nauk SSSR'' , '''170'''  (1966)  pp. 38–40</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  T.D. Dzhuraev,  "Boundary value problems for equations of mixed and mixed-composite type" , Tashkent  (1979)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Tricomi,  "On second-order linear partial differential equations of mixed type" , Moscow-Leningrad  (1947)  (In Russian; translated from Italian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F.G. Tricomi,  "Equazioni a derivate parziale" , Cremonese  (1957)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.V. Bitsadze,  "Zum Problem der Gleichungen vom gemischten Typus" , Deutsch. Verlag Wissenschaft.  (1957)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.V. Bitsadse,  "Equations of mixed type" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  L. Bers,  "Mathematical aspects of subsonic and transonic gas dynamics" , Wiley  (1958)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.M. Nakhushev,  "A boundary value problem for an equation of mixed type with two lines of degeneracy"  ''Soviet Math. Dokl.'' , '''7''' :  5  (1966)  pp. 1142–1145  ''Dokl. Akad. Nauk SSSR'' , '''170'''  (1966)  pp. 38–40</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  T.D. Dzhuraev,  "Boundary value problems for equations of mixed and mixed-composite type" , Tashkent  (1979)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 08:26, 6 June 2020


The problem related to the existence of solutions for differential equations of mixed elliptic-hyperbolic type with two independent variables in an open domain $ \Omega $ of special shape. The domain $ \Omega $ can be decomposed into the union of two subdomains $ \Omega _ {1} $ and $ \Omega _ {2} $ by a smooth simple curve $ AB $ whose end points $ A $ and $ B $ are different points of $ \partial \Omega $. The equation is elliptic in $ \Omega _ {1} $, hyperbolic in $ \Omega _ {2} $, and degenerates to parabolic on the curve $ AB $. The boundary $ \partial \Omega _ {1} $ is the union of the curve $ AB $ and a smooth simple curve $ \sigma $, while $ \partial \Omega _ {2} $ is the union of characteristics $ AC $ and $ BC $ and the curve $ AB $. The desired solution must take prescribed data on $ \sigma $ and on only one of the characteristics $ AC $ and $ BC $( see Mixed-type differential equation).

The Tricomi problem for the Tricomi equation

$$ \tag{1 } Tu \equiv \ yu _ {xx} + u _ {yy} = 0 $$

was first posed and studied by F. Tricomi [1], [2]. The domain $ \Omega $ is bounded by a smooth curve $ \sigma \subset \{ {( x, y) } : {y = 0 } \} $ with end points $ A ( 0, 0) $, $ B ( 1, 0) $ and characteristics $ AC $ and $ BC $:

$$ AC : x = { \frac{2}{3} } (- y) ^ {3/2} ,\ \ BC : 1 - x = { \frac{2}{3} } (- y) ^ {3/2} . $$

Under specified restrictions on the smoothness of the given functions and the behaviour of the derivative $ u _ {y} $ of the solution $ u $ at the points $ A $ and $ B $, the Tricomi problem

$$ \tag{2 } u | _ \sigma = \phi ,\ u | _ {AC } = \psi $$

for equation (1) reduces to finding the solution $ u = u ( x, y) $ of equation (1) that is regular in the domain $ \Omega ^ {+} = \Omega \cap \{ {( x, y) } : {y > 0 } \} $ and that satisfies the boundary conditions

$$ \tag{3 } u \mid _ \sigma = \phi , $$

$$ u _ {y} ( x, 0) = \alpha D _ {0x} ^ {2/3} u ( x, 0) + \psi _ {1} ( x),\ 0 \leq x \leq 1, $$

where $ \alpha = \textrm{ const } > 0 $, $ \psi _ {1} ( x) $ is uniquely determined by $ \psi $, $ D _ {0x} ^ {2/3} $ is the fractional differentiation operator of order $ 2/3 $( in the sense of Riemann–Liouville):

$$ D _ {0x} ^ {2/3} \tau ( x) = \ { \frac{1}{\Gamma ( 1/3) } } { \frac{d}{dx } } \int\limits _ { 0 } ^ { x } \frac{\tau ( t) dt }{( x - t) ^ {2/3} } , $$

and $ \Gamma ( z) $ is the Euler gamma-function.

The solution of the problem (1), (3) reduces in turn to finding the function $ \nu ( x) = u _ {y} ( x, 0) $ from some singular integral equation. This equation in the case when $ \sigma $ is the curve

$$ \sigma _ {0} = \ \left \{ { ( x, y) } : { \left ( x - { \frac{1}{2} } \right ) ^ {2} + { \frac{4}{9} } y ^ {3} = { \frac{1}{4} } , y \geq 0 } \right \} $$

has the form

$$ \nu ( x) + { \frac{1}{\pi \sqrt 3 } } \int\limits _ { 0 } ^ { 1 } \left ( { \frac{t}{x} } \right ) ^ {2/3} \left ( { \frac{1}{t - x } } - { \frac{1}{t + x - 2x } } \right ) \nu ( t) dt = f ( x), $$

where $ f ( x) $ is expressed explicitly in terms of $ \phi $ and $ \psi $, and the integral is understood in the sense of the Cauchy principal value (see [1][4]).

In the proof of the uniqueness and existence of the solution of the Tricomi problem, in addition to the Bitsadze extremum principle (see Mixed-type differential equation) and the method of integral equations, the so-called $ a $ $ b $ $ c $ method is used, the essence of which is to construct for a given second-order differential operator $ L $( for example, $ T $) with domain of definition $ D ( L) $, a first-order differential operator

$$ l = a ( x, y) { \frac \partial {\partial x } } + b ( x, y) { \frac \partial {\partial y } } + c ( x, y),\ \ ( x, y) \in \Omega , $$

with the property that

$$ \int\limits _ \Omega lu \cdot Lu dx dy \geq \ C \| u \| ^ {2} \ \ \textrm{ for } \textrm{ all } \ u \in D ( L), $$

where $ C = \textrm{ const } > 0 $ and $ \| \cdot \| $ is a certain norm (see [5]).

The Tricomi problem has been generalized both to the case of mixed-type differential equations with curves of parabolic degeneracy (see [6]) and to the case of equations of mixed hyperbolic-parabolic type (see [7]).

References

[1] F. Tricomi, "On second-order linear partial differential equations of mixed type" , Moscow-Leningrad (1947) (In Russian; translated from Italian)
[2] F.G. Tricomi, "Equazioni a derivate parziale" , Cremonese (1957)
[3] A.V. Bitsadze, "Zum Problem der Gleichungen vom gemischten Typus" , Deutsch. Verlag Wissenschaft. (1957) (Translated from Russian)
[4] A.V. Bitsadse, "Equations of mixed type" , Pergamon (1964) (Translated from Russian)
[5] L. Bers, "Mathematical aspects of subsonic and transonic gas dynamics" , Wiley (1958)
[6] A.M. Nakhushev, "A boundary value problem for an equation of mixed type with two lines of degeneracy" Soviet Math. Dokl. , 7 : 5 (1966) pp. 1142–1145 Dokl. Akad. Nauk SSSR , 170 (1966) pp. 38–40
[7] T.D. Dzhuraev, "Boundary value problems for equations of mixed and mixed-composite type" , Tashkent (1979) (In Russian)

Comments

Using a functional-analytic method, S. Agmon [a5] has investigated more general equations. Fourier integral operators were used by R.J.P. Groothuizen [a2].

For additional references see also Mixed-type differential equation.

References

[a1] P.R. Garabedian, "Partial differential equations" , Wiley (1964)
[a2] R.J.P. Groothhuizen, "Mixed elliptic-hyperbolic partial differential operators: a case-study in Fourier integral operators" , CWI Tracts , 16 , CWI , Amsterdam (1985) (Thesis Free University Amsterdam)
[a3] M.M. Smirnov, "Equations of mixed type" , Amer. Math. Soc. (1978) (Translated from Russian)
[a4] T.V. Gramtcheff, "An application of Airy functions to the Tricomi problem" Math. Nachr. , 102 (1981) pp. 169–181
[a5] S. Agmon, "Boundary value problems for equations of mixed type" G. Sansone (ed.) , Convegno Internaz. Equazioni Lineari alle Derivati Parziali (Trieste, 1954) , Cremonese (1955) pp. 65–68
How to Cite This Entry:
Tricomi problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tricomi_problem&oldid=49034
This article was adapted from an original article by A.M. Nakhushev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article