Namespaces
Variants
Actions

Difference between revisions of "Transversal system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''transversal design, transversal scheme, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939902.png" />-system''
+
<!--
 +
t0939902.png
 +
$#A+1 = 58 n = 0
 +
$#C+1 = 58 : ~/encyclopedia/old_files/data/T093/T.0903990 Transversal system,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939903.png" /> of sets defined for a given collection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939904.png" /> pairwise-disjoint finite sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939905.png" />, each of which has cardinality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939906.png" />. Namely: a transversal system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939907.png" /> is a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939908.png" /> sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t0939909.png" /> (blocks or transversals), containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399010.png" /> elements each and such that:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399011.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399012.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399013.png" />;
+
''transversal design, transversal scheme,  $  T $-
 +
system''
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399014.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399015.png" />.
+
A system  $  T _ {0} ( m, t) $
 +
of sets defined for a given collection of  $  m $
 +
pairwise-disjoint finite sets  $  S _ {1} \dots S _ {m} $,
 +
each of which has cardinality  $  t $.  
 +
Namely: a transversal system  $  T _ {0} ( m, t) $
 +
is a system of  $  t  ^ {2} $
 +
sets  $  Y _ {1} \dots Y _ {t  ^ {2}  } $(
 +
blocks or transversals), containing  $  m $
 +
elements each and such that:
  
In a transversal design, any two elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399018.png" />, occur together in exactly one block. The existence of a transversal design <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399019.png" /> is equivalent to the existence of an [[Orthogonal array|orthogonal array]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399020.png" />.
+
1)  $  | Y _ {j} \cap S _ {i} | = 1 $;
 +
$  i = 1 \dots m $;
 +
$  j = 1 \dots t  ^ {2} $;
 +
 
 +
2)  $  | Y _ {j} \cap Y _ {k} | \leq  1 $
 +
for  $  j \neq k $.
 +
 
 +
In a transversal design, any two elements $  a \in S _ {i} $
 +
and $  b \in S _ {j} $,  
 +
$  i \neq j $,  
 +
occur together in exactly one block. The existence of a transversal design $  T _ {0} ( m, t) $
 +
is equivalent to the existence of an [[Orthogonal array|orthogonal array]] $  \mathop{\rm OA} ( t, m) $.
  
 
Transversal designs are used in recursive constructions of block designs (cf. [[Block design|Block design]]).
 
Transversal designs are used in recursive constructions of block designs (cf. [[Block design|Block design]]).
  
A set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399021.png" /> transversals in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399022.png" /> is called parallel if no two of them intersect. If a transversal design <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399023.png" /> contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399024.png" /> (or more) parallel classes, then it is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399025.png" />.
+
A set of t $
 +
transversals in $  T _ {0} ( m, t) $
 +
is called parallel if no two of them intersect. If a transversal design $  T _ {0} ( m, t) $
 +
contains $  e $(
 +
or more) parallel classes, then it is denoted by $  T _ {e} ( m, t) $.
  
 
Some of the basic properties of transversal systems are:
 
Some of the basic properties of transversal systems are:
  
a) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399027.png" /> exist, then so does <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399028.png" />;
+
a) if $  T _ {d} ( m, s) $
 +
and $  T _ {e} ( m, t) $
 +
exist, then so does $  T _ {de} ( m, st) $;
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399029.png" /> exists if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399030.png" /> exists.
+
b) $  T _ {t} ( m - 1, t) $
 +
exists if and only if $  T _ {0} ( m, t) $
 +
exists.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Hall,  "Combinatorial theory" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Hanani,  "The existence and construction of balanced incomplete block designs"  ''Ann. Math. Stat.'' , '''32'''  (1961)  pp. 361–386</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M. Hall,  "Combinatorial theory" , Wiley  (1986)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  H. Hanani,  "The existence and construction of balanced incomplete block designs"  ''Ann. Math. Stat.'' , '''32'''  (1961)  pp. 361–386</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The finite sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399031.png" /> making up the design are called point classes or point groups.
+
The finite sets $  S _ {1} \dots S _ {m} $
 +
making up the design are called point classes or point groups.
  
The existence of a transversal design <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399032.png" /> is equivalent to the existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399033.png" /> mutually [[Orthogonal Latin squares|orthogonal Latin squares]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399034.png" />. If a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399035.png" /> exists, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399036.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399037.png" />.
+
The existence of a transversal design $  T _ {0} ( m, t) $
 +
is equivalent to the existence of $  m - 2 $
 +
mutually [[Orthogonal Latin squares|orthogonal Latin squares]] of order t $.  
 +
If a $  T _ {0} ( m, t) $
 +
exists, and t > 1 $,  
 +
then $  m \leq  t + 1 $.
  
 
See also [[#References|[a1]]]–[[#References|[a3]]] for the recursive construction of and existence results for transversal designs (and of their generalization  "transversal design with holes" , [[#References|[a2]]]).
 
See also [[#References|[a1]]]–[[#References|[a3]]] for the recursive construction of and existence results for transversal designs (and of their generalization  "transversal design with holes" , [[#References|[a2]]]).
Line 33: Line 73:
 
One of the most important results on recursive construction of transversal designs (due to R.M. Wilson [[#References|[a4]]], see also [[#References|[a1]]]) is as follows:
 
One of the most important results on recursive construction of transversal designs (due to R.M. Wilson [[#References|[a4]]], see also [[#References|[a1]]]) is as follows:
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399038.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399039.png" /> with point classes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399041.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399042.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399043.png" />-subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399044.png" /> and put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399045.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399046.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399047.png" /> for every block <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399048.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399049.png" />. Assume the existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399050.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399051.png" /> and of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399052.png" /> for each block <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399053.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399054.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399055.png" /> also exists.
+
Let $  D $
 +
be a $  T _ {0} ( k+ m, s) $
 +
with point classes $  P _ {1} \dots P _ {k} $
 +
and $  Q _ {1} \dots Q _ {m} $,  
 +
let $  T $
 +
be a t $-
 +
subset of $  Q _ {1} \cup {} \dots \cup Q _ {m} $
 +
and put $  t _ {i} = | T \cap Q _ {i} | $
 +
for $  i = 1 \dots m $,  
 +
and $  u _ {B} = | B \cap T | $
 +
for every block $  B $
 +
of $  D $.  
 +
Assume the existence of $  T _ {0} ( k , t _ {i} ) $
 +
for $  i = 1 \dots m $
 +
and of $  T _ {u _ {B}  } ( k , n + u _ {B} ) $
 +
for each block $  B $
 +
of $  D $.  
 +
Then $  T _ {0} ( k, ns+ t ) $
 +
also exists.
  
Transversals designs (and their dual structures, nets) are also of considerable geometric and algebraic interest. For instance, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399056.png" /> is equivalent to an affine or [[Projective plane|projective plane]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399057.png" />, and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399058.png" /> is basically the same as a [[Quasi-group|quasi-group]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093990/t09399059.png" />. Thus, the geometric and algebraic properties of transversal designs (including the study of their automorphism groups) have found considerable interest, cf. [[#References|[a4]]].
+
Transversals designs (and their dual structures, nets) are also of considerable geometric and algebraic interest. For instance, a $  T _ {0} ( s+ 1, s) $
 +
is equivalent to an affine or [[Projective plane|projective plane]] of order $  s $,  
 +
and a $  T _ {0} ( 3, s) $
 +
is basically the same as a [[Quasi-group|quasi-group]] of order $  s $.  
 +
Thus, the geometric and algebraic properties of transversal designs (including the study of their automorphism groups) have found considerable interest, cf. [[#References|[a4]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Beth,  D. Jungnickel,  H. Lenz,  "Design theory" , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.E. Brouwer,  "Recursive constructions of mutually orthogonal Latin squares"  ''Ann. Discr. Math.'' , '''46'''  (1991)  pp. 149–168</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Jungnickel,  "Latin squares, their geometries and their groups: a survey"  D. Ray-Chaudhuri (ed.) , ''Coding Theory and Design Theory'' , ''IMA Vol. Math. Appl.'' , '''21''' , Springer  (1990)  pp. 166–225</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.M. Wilson,  "Concerning the number of mutually orthogonal Latin squares"  ''Discr. Math.'' , '''9'''  (1974)  pp. 181–198</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  H. Hanani,  "Balanced incomplete block designs and related designs"  ''Discrete Math.'' , '''11'''  (1975)  pp. 255–369</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  T. Beth,  D. Jungnickel,  H. Lenz,  "Design theory" , Cambridge Univ. Press  (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.E. Brouwer,  "Recursive constructions of mutually orthogonal Latin squares"  ''Ann. Discr. Math.'' , '''46'''  (1991)  pp. 149–168</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Jungnickel,  "Latin squares, their geometries and their groups: a survey"  D. Ray-Chaudhuri (ed.) , ''Coding Theory and Design Theory'' , ''IMA Vol. Math. Appl.'' , '''21''' , Springer  (1990)  pp. 166–225</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.M. Wilson,  "Concerning the number of mutually orthogonal Latin squares"  ''Discr. Math.'' , '''9'''  (1974)  pp. 181–198</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  H. Hanani,  "Balanced incomplete block designs and related designs"  ''Discrete Math.'' , '''11'''  (1975)  pp. 255–369</TD></TR></table>

Revision as of 08:26, 6 June 2020


transversal design, transversal scheme, $ T $- system

A system $ T _ {0} ( m, t) $ of sets defined for a given collection of $ m $ pairwise-disjoint finite sets $ S _ {1} \dots S _ {m} $, each of which has cardinality $ t $. Namely: a transversal system $ T _ {0} ( m, t) $ is a system of $ t ^ {2} $ sets $ Y _ {1} \dots Y _ {t ^ {2} } $( blocks or transversals), containing $ m $ elements each and such that:

1) $ | Y _ {j} \cap S _ {i} | = 1 $; $ i = 1 \dots m $; $ j = 1 \dots t ^ {2} $;

2) $ | Y _ {j} \cap Y _ {k} | \leq 1 $ for $ j \neq k $.

In a transversal design, any two elements $ a \in S _ {i} $ and $ b \in S _ {j} $, $ i \neq j $, occur together in exactly one block. The existence of a transversal design $ T _ {0} ( m, t) $ is equivalent to the existence of an orthogonal array $ \mathop{\rm OA} ( t, m) $.

Transversal designs are used in recursive constructions of block designs (cf. Block design).

A set of $ t $ transversals in $ T _ {0} ( m, t) $ is called parallel if no two of them intersect. If a transversal design $ T _ {0} ( m, t) $ contains $ e $( or more) parallel classes, then it is denoted by $ T _ {e} ( m, t) $.

Some of the basic properties of transversal systems are:

a) if $ T _ {d} ( m, s) $ and $ T _ {e} ( m, t) $ exist, then so does $ T _ {de} ( m, st) $;

b) $ T _ {t} ( m - 1, t) $ exists if and only if $ T _ {0} ( m, t) $ exists.

References

[1] M. Hall, "Combinatorial theory" , Wiley (1986)
[2] H. Hanani, "The existence and construction of balanced incomplete block designs" Ann. Math. Stat. , 32 (1961) pp. 361–386

Comments

The finite sets $ S _ {1} \dots S _ {m} $ making up the design are called point classes or point groups.

The existence of a transversal design $ T _ {0} ( m, t) $ is equivalent to the existence of $ m - 2 $ mutually orthogonal Latin squares of order $ t $. If a $ T _ {0} ( m, t) $ exists, and $ t > 1 $, then $ m \leq t + 1 $.

See also [a1][a3] for the recursive construction of and existence results for transversal designs (and of their generalization "transversal design with holes" , [a2]).

One of the most important results on recursive construction of transversal designs (due to R.M. Wilson [a4], see also [a1]) is as follows:

Let $ D $ be a $ T _ {0} ( k+ m, s) $ with point classes $ P _ {1} \dots P _ {k} $ and $ Q _ {1} \dots Q _ {m} $, let $ T $ be a $ t $- subset of $ Q _ {1} \cup {} \dots \cup Q _ {m} $ and put $ t _ {i} = | T \cap Q _ {i} | $ for $ i = 1 \dots m $, and $ u _ {B} = | B \cap T | $ for every block $ B $ of $ D $. Assume the existence of $ T _ {0} ( k , t _ {i} ) $ for $ i = 1 \dots m $ and of $ T _ {u _ {B} } ( k , n + u _ {B} ) $ for each block $ B $ of $ D $. Then $ T _ {0} ( k, ns+ t ) $ also exists.

Transversals designs (and their dual structures, nets) are also of considerable geometric and algebraic interest. For instance, a $ T _ {0} ( s+ 1, s) $ is equivalent to an affine or projective plane of order $ s $, and a $ T _ {0} ( 3, s) $ is basically the same as a quasi-group of order $ s $. Thus, the geometric and algebraic properties of transversal designs (including the study of their automorphism groups) have found considerable interest, cf. [a4].

References

[a1] T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)
[a2] A.E. Brouwer, "Recursive constructions of mutually orthogonal Latin squares" Ann. Discr. Math. , 46 (1991) pp. 149–168
[a3] D. Jungnickel, "Latin squares, their geometries and their groups: a survey" D. Ray-Chaudhuri (ed.) , Coding Theory and Design Theory , IMA Vol. Math. Appl. , 21 , Springer (1990) pp. 166–225
[a4] R.M. Wilson, "Concerning the number of mutually orthogonal Latin squares" Discr. Math. , 9 (1974) pp. 181–198
[a5] H. Hanani, "Balanced incomplete block designs and related designs" Discrete Math. , 11 (1975) pp. 255–369
How to Cite This Entry:
Transversal system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transversal_system&oldid=49025
This article was adapted from an original article by V.E. Tarakanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article