Difference between revisions of "Torus knot"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0933602.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/T093/T.0903360 Torus knot | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of type $ ( p, q) $'' | |
− | + | A curve in $ \mathbf R ^ {3} $ | |
+ | that in cylindrical coordinates $ r, z, \theta $ | ||
+ | is given by the equations | ||
− | + | $$ | |
+ | r = 2 + \cos t,\ \ | ||
+ | z = \sin t,\ \ | ||
+ | \theta = { | ||
+ | \frac{pt }{q} | ||
+ | } , | ||
+ | $$ | ||
− | All torus knots are Neuwirth knots (cf. [[Neuwirth knot|Neuwirth knot]]). The genus of a torus knot is | + | where $ t \in [ 0, 2 \pi q] $. |
+ | Here $ p $ | ||
+ | and $ q $ | ||
+ | are coprime natural numbers. The torus knot lies on the surface of the unknotted torus $ ( r - 2) ^ {2} + z ^ {2} = 1 $, | ||
+ | intersecting the meridians of the torus at $ p $ | ||
+ | points and the parallels at $ q $ | ||
+ | points. The torus knots of types $ ( p, 1) $ | ||
+ | and $ ( 1, q) $ | ||
+ | are trivial. The simplest non-trivial torus knot is the trefoil (Fig. a), which is of type $ ( 2, 3) $. | ||
+ | The group of the torus knot of type $ ( p, q) $ | ||
+ | has a [[Presentation|presentation]] $ < a, b $: | ||
+ | $ a ^ {p} = b ^ {q} > $, | ||
+ | and the Alexander polynomial is given by | ||
+ | |||
+ | $$ | ||
+ | ( t ^ {pq} - 1) | ||
+ | ( t - 1) | ||
+ | ( t ^ {p} - 1) ^ {-} 1 | ||
+ | ( t ^ {q} - 1) ^ {-} 1 . | ||
+ | $$ | ||
+ | |||
+ | All torus knots are Neuwirth knots (cf. [[Neuwirth knot|Neuwirth knot]]). The genus of a torus knot is $ ( p - 1) ( q - 1)/2 $. | ||
A second construction of a torus knot uses the singularity at the origin of the algebraic hypersurface | A second construction of a torus knot uses the singularity at the origin of the algebraic hypersurface | ||
− | + | $$ | |
+ | V = \ | ||
+ | \{ {( z _ {1} , z _ {2} ) \in \mathbf C ^ {2} } : { | ||
+ | z _ {1} ^ {p} + z _ {2} ^ {q} = 0 } \} | ||
+ | . | ||
+ | $$ | ||
− | If | + | If $ p $ |
+ | and $ q $ | ||
+ | are coprime, then the intersection of $ V $ | ||
+ | with a sufficiently small sphere $ S ^ {3} \subset \mathbf C ^ {2} $ | ||
+ | is a knot in $ S ^ {3} $ | ||
+ | equivalent to the torus knot of type $ ( p, q) $. | ||
+ | In the case when $ p $ | ||
+ | and $ q $ | ||
+ | are not coprime, this intersection also lies on an unknotted torus $ T ^ {2} \subset S ^ {3} $, | ||
+ | but consists of several components. The link so obtained is called the torus link of type $ ( p, q) $( | ||
+ | cf. Fig. b, where $ p = 3 $, | ||
+ | $ q = 6 $). | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/t093360a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/t093360a.gif" /> | ||
Line 27: | Line 80: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 08:26, 6 June 2020
of type $ ( p, q) $
A curve in $ \mathbf R ^ {3} $ that in cylindrical coordinates $ r, z, \theta $ is given by the equations
$$ r = 2 + \cos t,\ \ z = \sin t,\ \ \theta = { \frac{pt }{q} } , $$
where $ t \in [ 0, 2 \pi q] $. Here $ p $ and $ q $ are coprime natural numbers. The torus knot lies on the surface of the unknotted torus $ ( r - 2) ^ {2} + z ^ {2} = 1 $, intersecting the meridians of the torus at $ p $ points and the parallels at $ q $ points. The torus knots of types $ ( p, 1) $ and $ ( 1, q) $ are trivial. The simplest non-trivial torus knot is the trefoil (Fig. a), which is of type $ ( 2, 3) $. The group of the torus knot of type $ ( p, q) $ has a presentation $ < a, b $: $ a ^ {p} = b ^ {q} > $, and the Alexander polynomial is given by
$$ ( t ^ {pq} - 1) ( t - 1) ( t ^ {p} - 1) ^ {-} 1 ( t ^ {q} - 1) ^ {-} 1 . $$
All torus knots are Neuwirth knots (cf. Neuwirth knot). The genus of a torus knot is $ ( p - 1) ( q - 1)/2 $.
A second construction of a torus knot uses the singularity at the origin of the algebraic hypersurface
$$ V = \ \{ {( z _ {1} , z _ {2} ) \in \mathbf C ^ {2} } : { z _ {1} ^ {p} + z _ {2} ^ {q} = 0 } \} . $$
If $ p $ and $ q $ are coprime, then the intersection of $ V $ with a sufficiently small sphere $ S ^ {3} \subset \mathbf C ^ {2} $ is a knot in $ S ^ {3} $ equivalent to the torus knot of type $ ( p, q) $. In the case when $ p $ and $ q $ are not coprime, this intersection also lies on an unknotted torus $ T ^ {2} \subset S ^ {3} $, but consists of several components. The link so obtained is called the torus link of type $ ( p, q) $( cf. Fig. b, where $ p = 3 $, $ q = 6 $).
Figure: t093360a
Figure: t093360b
References
[1] | R.H. Crowell, R.H. Fox, "Introduction to knot theory" , Ginn (1963) |
[2] | J. Milnor, "Singular points of complex hypersurfaces" , Princeton Univ. Press (1968) |
Comments
See also Knot theory.
References
[a1] | D. Rolfsen, "Knots and links" , Publish or Perish (1976) |
Torus knot. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Torus_knot&oldid=49001