Namespaces
Variants
Actions

Difference between revisions of "Topological entropy"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: expand bibliodata)
m (tex encoded by computer)
Line 1: Line 1:
A concept in [[Topological dynamics|topological dynamics]] and [[Ergodic theory|ergodic theory]] analogous to the [[Metric entropy|metric entropy]] of dynamical systems (introduced in [[#References|[1]]]). For an open covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930401.png" /> of a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930402.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930403.png" /> denote the logarithm (usually to base 2) of the smallest number of elements of the covering that can cover <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930404.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930405.png" /> is a continuous mapping, then the limit
+
<!--
 +
t0930401.png
 +
$#A+1 = 53 n = 0
 +
$#C+1 = 53 : ~/encyclopedia/old_files/data/T093/T.0903040 Topological entropy
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930406.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
exists, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930407.png" /> is the covering whose elements are all the non-empty intersections of the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930408.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t0930409.png" />. The topological entropy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304010.png" /> is defined to be the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304011.png" /> over all possible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304012.png" />. There is an equivalent definition in the metric case: For a metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304013.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304014.png" /> denote the largest number of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304015.png" /> with pairwise distance greater than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304016.png" />. Then
+
A concept in [[Topological dynamics|topological dynamics]] and [[Ergodic theory|ergodic theory]] analogous to the [[Metric entropy|metric entropy]] of dynamical systems (introduced in [[#References|[1]]]). For an open covering  $  \mathfrak A $
 +
of a compactum  $  X $,  
 +
let $  H ( \mathfrak A ) $
 +
denote the logarithm (usually to base 2) of the smallest number of elements of the covering that can cover  $  X $.  
 +
If  $  S: X \rightarrow X $
 +
is a continuous mapping, then the limit
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304017.png" /></td> </tr></table>
+
$$
 +
h ( S, \mathfrak A )  = \
 +
\lim\limits _ {n \rightarrow \infty } \
 +
{
 +
\frac{1}{n}
 +
} H
 +
( \mathfrak A \lor S  ^ {-} 1
 +
\mathfrak A \lor \dots \lor
 +
S ^ {- n + 1 } \mathfrak A )
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304018.png" /> (cf. [[#References|[2]]]–[[#References|[4]]]).
+
exists, where $  \mathfrak A \lor \mathfrak B $
 +
is the covering whose elements are all the non-empty intersections of the elements of  $  \mathfrak A $
 +
and  $  \mathfrak B $.
 +
The topological entropy  $  h _ { \mathop{\rm top}  } ( S) $
 +
is defined to be the supremum of  $  h ( S, \mathfrak A ) $
 +
over all possible  $  \mathfrak A $.
 +
There is an equivalent definition in the metric case: For a metric  $  \rho $,
 +
let  $  K _  \epsilon  ( X, \rho ) $
 +
denote the largest number of points of  $  X $
 +
with pairwise distance greater than  $  \epsilon $.
 +
Then
 +
 
 +
$$
 +
h _ { \mathop{\rm top}  } ( S)  = \
 +
\lim\limits _ {\epsilon \rightarrow 0 } \
 +
\lim\limits _ {n \rightarrow \infty } \
 +
{
 +
\frac{1}{n}
 +
}  \mathop{\rm log} \
 +
K _  \epsilon  ( X, \rho _ {n} ),
 +
$$
 +
 
 +
where  $  \rho _ {n} ( x, y) = \max _ {0 \leq  i \leq  n }  \rho ( S  ^ {i} x, S  ^ {i} y) $(
 +
cf. [[#References|[2]]]–[[#References|[4]]]).
  
 
It turns out that
 
It turns out that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304019.png" /></td> </tr></table>
+
$$
 +
h _ { \mathop{\rm top}  } ( S  ^ {n} )  = \
 +
n h _ { \mathop{\rm top}  } ( S),
 +
$$
  
and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304020.png" /> is a homeomorphism, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304021.png" />. Hence it is natural to take the topological entropy of a [[Cascade|cascade]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304022.png" /> to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304023.png" />. For a topological [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304024.png" /> it turns out that
+
and if $  S $
 +
is a homeomorphism, then $  h _ { \mathop{\rm top}  } ( S  ^ {-} 1 ) = h _ { \mathop{\rm top}  } ( S) $.  
 +
Hence it is natural to take the topological entropy of a [[Cascade|cascade]] $  \{ S  ^ {n} \} $
 +
to be $  h _ { \mathop{\rm top}  } ( S) $.  
 +
For a topological [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] $  \{ S _ {t} \} $
 +
it turns out that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304025.png" /></td> </tr></table>
+
$$
 +
h _ { \mathop{\rm top}  } ( S _ {t} )  = \
 +
| t |  h _ { \mathop{\rm top}  } ( S _ {1} ),
 +
$$
  
so it is natural to take the topological entropy of the flow to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304026.png" />. In a somewhat different way one can define the topological entropy for other transformation groups (it no longer reduces to the topological entropy of one of the elements of the group; cf. ).
+
so it is natural to take the topological entropy of the flow to be $  h _ { \mathop{\rm top}  } ( S _ {1} ) $.  
 +
In a somewhat different way one can define the topological entropy for other transformation groups (it no longer reduces to the topological entropy of one of the elements of the group; cf. ).
  
The topological entropy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304027.png" /> coincides with the supremum of the metric entropy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304028.png" /> over all possible normalized invariant Borel measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304029.png" /> (cf. [[#References|[2]]], [[#References|[5]]]–;
+
The topological entropy $  h _ { \mathop{\rm top}  } ( S) $
 +
coincides with the supremum of the metric entropy $  h _  \mu  ( S) $
 +
over all possible normalized invariant Borel measures $  \mu $(
 +
cf. [[#References|[2]]], [[#References|[5]]]–;
  
for the existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304030.png" /> and the dependence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304032.png" />). This is a special case of the variational principle, which establishes a topological interpretation of the value
+
for the existence of $  \max  h _  \mu  $
 +
and the dependence of $  h _ { \mathop{\rm top}  } ( S) $
 +
on $  S $).  
 +
This is a special case of the variational principle, which establishes a topological interpretation of the value
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304033.png" /></td> </tr></table>
+
$$
 +
\sup _  \mu  \left [ h _  \mu  ( S) + \int\limits f  d \mu \right ]
 +
$$
  
for a fixed continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304034.png" /> (cf. [[#References|[4]]], [[#References|[8]]], [[#References|[9]]]). The topological entropy gives a characteristic of the  "complexity"  or  "diversity"  of motions in a dynamical system (cf. [[#References|[10]]], [[#References|[3]]], [[#References|[4]]]). It is also connected in certain cases with the asymptotics (as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304035.png" />) of the number of periodic trajectories (of period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304036.png" />; cf. [[Periodic trajectory|Periodic trajectory]] and [[#References|[3]]], [[#References|[4]]], –[[#References|[13]]]). The  "entropy conjecture54C70entropy conjecture"  asserts that the topological entropy of a diffeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304037.png" /> of a closed manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304038.png" /> is not less than the logarithm of the [[Spectral radius|spectral radius]] of the linear transformation induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304039.png" /> on the homology spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304040.png" /> (cf. , [[#References|[15]]]). It has been proved in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304041.png" />-case, .
+
for a fixed continuous function $  f $(
 +
cf. [[#References|[4]]], [[#References|[8]]], [[#References|[9]]]). The topological entropy gives a characteristic of the  "complexity"  or  "diversity"  of motions in a dynamical system (cf. [[#References|[10]]], [[#References|[3]]], [[#References|[4]]]). It is also connected in certain cases with the asymptotics (as $  T \rightarrow \infty $)  
 +
of the number of periodic trajectories (of period $  \leq  T $;  
 +
cf. [[Periodic trajectory|Periodic trajectory]] and [[#References|[3]]], [[#References|[4]]], –[[#References|[13]]]). The  "entropy conjecture54C70entropy conjecture"  asserts that the topological entropy of a diffeomorphism $  S $
 +
of a closed manifold $  W $
 +
is not less than the logarithm of the [[Spectral radius|spectral radius]] of the linear transformation induced by $  S $
 +
on the homology spaces $  H _ {*} ( W;  \mathbf R ) $(
 +
cf. , [[#References|[15]]]). It has been proved in the $  C  ^  \infty  $-
 +
case, .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.L. Adler,  A.G. Konheim,  M.H. McAndrew,  "Topological entropy"  ''Trans. Amer. Math. Soc.'' , '''114'''  (1965)  pp. 309–319</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.I. Dinaburg,  "On the relation between various entropy characteristics of dynamical systems"  ''Math. USSR Izv.'' , '''5''' :  2  (1971)  pp. 337–378  ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''35''' :  2  (1971)  pp. 324–366</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.M. Alekseev,  "Symbolic dynamics" , ''Eleventh Mathematical Summer School'' , Kiev  (1976)  pp. 5–210  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Boywen,  "Methods of symbolic dynamics" , Moscow  (1979)  (In Russian; translated from English)  (Collection of papers)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T.N.T. Goodman,  "Relating topological entropy and measure entropy"  ''Bull. London Math. Soc.'' , '''3'''  (1971)  pp. 176–180</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L.W. Goodwyn,  "Comparing topological entropy with measure-theoretic entropy"  ''Amer. J. Math.'' , '''94'''  (1972)  pp. 366–368</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  A.T. Tagi-zade,  "The entropy of motions of amenable groups"  ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' :  6  (1978)  pp. 18–22  (In Russian)</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  A.T. Tagi-zade,  "Entropy characteristics of amenable groups"  ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' :  8  (1978)  pp. 11–14  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  A.M. Stepin,  A.T. Tagi-zade,  "Variational characterization of the topological pressure of amenable transformation groups"  ''Soviet Math. Dokl.'' , '''22''' :  2  (1980)  pp. 405–409  ''Dokl. Akad. Nauk SSSR'' , '''254''' :  3  (1980)  pp. 545–548</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  J. Moulin Ollagnier,  D. Pinchon,  "The variational principle"  ''Studia Math.'' , '''72'''  (1982)  pp. 151–159</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  A.A. Brudno,  "Entropy and the complexity of the trajectories of a dynamical system"  ''Trans. Moscow Math. Soc.'' , '''44'''  (1982)  pp. 127–152  ''Trudy Moskov. Mat. Obshch.'' , '''44'''  (1982)  pp. 124–149</TD></TR><TR><TD valign="top">[11a]</TD> <TD valign="top">  A.G. Kushnirenko,  "Problems in the general theory of dynamical systems on a manifold"  ''Transl. Amer. Math. Soc.'' , '''116'''  (1981)  pp. 1–42  ''Ninth Math. Summer School''  (1976)  pp. 52–124</TD></TR><TR><TD valign="top">[11b]</TD> <TD valign="top">  A.B. Katok,  "Dynamical systems with hyperbolic structure"  ''Transl. Amer. Math. Soc.'' , '''116'''  (1981)  pp. 43–96  ''Ninth Math. Summer School''  (1976)  pp. 125–211</TD></TR><TR><TD valign="top">[11c]</TD> <TD valign="top">  V.M. Alekseev,  "Quasirandom oscillations and qualitative questions in celestial mechanics"  ''Transl. Amer. Math. Soc.'' , '''116'''  (1981)  pp. 97–169  ''Ninth Math. Summer School''  (1976)  pp. 212–341</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  A.B. Katok,  Ya.G. Sinai,  A.M. Stepin,  "The theory of dynamical systems and general transformation groups with invariant measure"  ''J. Soviet Math.'' , '''7''' :  6  (1977)  pp. 974–1065  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''13'''  (1975)  pp. 129–262</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">  A.B. Katok,  "Lyapunov exponents, entropy and periodic orbits for diffeomorphisms"  ''Publ. Math. IHES'' , '''51'''  (1980)  pp. 137–173</TD></TR><TR><TD valign="top">[14a]</TD> <TD valign="top">  A.B. Katok,  "The entropy conjecture"  D.V. Anosov (ed.) , ''Smooth dynamical systems'' , Moscow  (1977)  pp. 181–203  (In Russian)</TD></TR><TR><TD valign="top">[14b]</TD> <TD valign="top">  M. Shub,  "Dynamical systems, filtrations and entropy"  ''Bull. Amer. Math. Soc.'' , '''80'''  (1974)  pp. 27–41</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top">  D. Fried,  M. Shub,  "Entropy, linearity and chain-recurrence"  ''Publ. Math. IHES'' , '''50'''  (1979)  pp. 203–214</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top">  C. Grilleneberger,  "Ergodic theory on compact spaces" , Springer  (1976)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.L. Adler,  A.G. Konheim,  M.H. McAndrew,  "Topological entropy"  ''Trans. Amer. Math. Soc.'' , '''114'''  (1965)  pp. 309–319</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.I. Dinaburg,  "On the relation between various entropy characteristics of dynamical systems"  ''Math. USSR Izv.'' , '''5''' :  2  (1971)  pp. 337–378  ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''35''' :  2  (1971)  pp. 324–366</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.M. Alekseev,  "Symbolic dynamics" , ''Eleventh Mathematical Summer School'' , Kiev  (1976)  pp. 5–210  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Boywen,  "Methods of symbolic dynamics" , Moscow  (1979)  (In Russian; translated from English)  (Collection of papers)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T.N.T. Goodman,  "Relating topological entropy and measure entropy"  ''Bull. London Math. Soc.'' , '''3'''  (1971)  pp. 176–180</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L.W. Goodwyn,  "Comparing topological entropy with measure-theoretic entropy"  ''Amer. J. Math.'' , '''94'''  (1972)  pp. 366–368</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  A.T. Tagi-zade,  "The entropy of motions of amenable groups"  ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' :  6  (1978)  pp. 18–22  (In Russian)</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  A.T. Tagi-zade,  "Entropy characteristics of amenable groups"  ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' :  8  (1978)  pp. 11–14  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  A.M. Stepin,  A.T. Tagi-zade,  "Variational characterization of the topological pressure of amenable transformation groups"  ''Soviet Math. Dokl.'' , '''22''' :  2  (1980)  pp. 405–409  ''Dokl. Akad. Nauk SSSR'' , '''254''' :  3  (1980)  pp. 545–548</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  J. Moulin Ollagnier,  D. Pinchon,  "The variational principle"  ''Studia Math.'' , '''72'''  (1982)  pp. 151–159</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  A.A. Brudno,  "Entropy and the complexity of the trajectories of a dynamical system"  ''Trans. Moscow Math. Soc.'' , '''44'''  (1982)  pp. 127–152  ''Trudy Moskov. Mat. Obshch.'' , '''44'''  (1982)  pp. 124–149</TD></TR><TR><TD valign="top">[11a]</TD> <TD valign="top">  A.G. Kushnirenko,  "Problems in the general theory of dynamical systems on a manifold"  ''Transl. Amer. Math. Soc.'' , '''116'''  (1981)  pp. 1–42  ''Ninth Math. Summer School''  (1976)  pp. 52–124</TD></TR><TR><TD valign="top">[11b]</TD> <TD valign="top">  A.B. Katok,  "Dynamical systems with hyperbolic structure"  ''Transl. Amer. Math. Soc.'' , '''116'''  (1981)  pp. 43–96  ''Ninth Math. Summer School''  (1976)  pp. 125–211</TD></TR><TR><TD valign="top">[11c]</TD> <TD valign="top">  V.M. Alekseev,  "Quasirandom oscillations and qualitative questions in celestial mechanics"  ''Transl. Amer. Math. Soc.'' , '''116'''  (1981)  pp. 97–169  ''Ninth Math. Summer School''  (1976)  pp. 212–341</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  A.B. Katok,  Ya.G. Sinai,  A.M. Stepin,  "The theory of dynamical systems and general transformation groups with invariant measure"  ''J. Soviet Math.'' , '''7''' :  6  (1977)  pp. 974–1065  ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''13'''  (1975)  pp. 129–262</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top">  A.B. Katok,  "Lyapunov exponents, entropy and periodic orbits for diffeomorphisms"  ''Publ. Math. IHES'' , '''51'''  (1980)  pp. 137–173</TD></TR><TR><TD valign="top">[14a]</TD> <TD valign="top">  A.B. Katok,  "The entropy conjecture"  D.V. Anosov (ed.) , ''Smooth dynamical systems'' , Moscow  (1977)  pp. 181–203  (In Russian)</TD></TR><TR><TD valign="top">[14b]</TD> <TD valign="top">  M. Shub,  "Dynamical systems, filtrations and entropy"  ''Bull. Amer. Math. Soc.'' , '''80'''  (1974)  pp. 27–41</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top">  D. Fried,  M. Shub,  "Entropy, linearity and chain-recurrence"  ''Publ. Math. IHES'' , '''50'''  (1979)  pp. 203–214</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top">  C. Grilleneberger,  "Ergodic theory on compact spaces" , Springer  (1976)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Instead of the collection of translations [[#References|[4]]] one may consult [[#References|[a2]]].
 
Instead of the collection of translations [[#References|[4]]] one may consult [[#References|[a2]]].
  
In the above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304042.png" /> denotes the entropy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304043.png" /> with respect to the normalized invariant Borel measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304044.png" /> (cf. [[Entropy theory of a dynamical system|Entropy theory of a dynamical system]]). The value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304045.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304046.png" /> runs over the set of all normalized invariant Borel measures, is called the pressure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304047.png" /> (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304048.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304049.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304050.png" /> (i.e., the sup is a max), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304051.png" /> is called an equilibrium state or Gibbs measure for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304052.png" /> (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093040/t09304053.png" />). See [[#References|[a2]]], also for existence and uniqueness results.
+
In the above, $  h _  \mu  ( S) $
 +
denotes the entropy of $  S $
 +
with respect to the normalized invariant Borel measure $  \mu $(
 +
cf. [[Entropy theory of a dynamical system|Entropy theory of a dynamical system]]). The value $  P _ {S} ( f  ) = \sup _  \mu  [ h _  \mu  ( S) + \int f  d \mu ] $,  
 +
where $  \mu $
 +
runs over the set of all normalized invariant Borel measures, is called the pressure of $  f $(
 +
with respect to $  S $).  
 +
If $  \mu $
 +
satisfies $  h _  \mu  ( S) + \int f  d \mu = P _ {S} ( f  ) $(
 +
i.e., the sup is a max), then $  \mu $
 +
is called an equilibrium state or Gibbs measure for $  f $(
 +
with respect to $  S $).  
 +
See [[#References|[a2]]], also for existence and uniqueness results.
  
 
For recent results about the estimation of topological entropy, see [[#References|[a1]]] and the references given there.
 
For recent results about the estimation of topological entropy, see [[#References|[a1]]] and the references given there.

Revision as of 08:25, 6 June 2020


A concept in topological dynamics and ergodic theory analogous to the metric entropy of dynamical systems (introduced in [1]). For an open covering $ \mathfrak A $ of a compactum $ X $, let $ H ( \mathfrak A ) $ denote the logarithm (usually to base 2) of the smallest number of elements of the covering that can cover $ X $. If $ S: X \rightarrow X $ is a continuous mapping, then the limit

$$ h ( S, \mathfrak A ) = \ \lim\limits _ {n \rightarrow \infty } \ { \frac{1}{n} } H ( \mathfrak A \lor S ^ {-} 1 \mathfrak A \lor \dots \lor S ^ {- n + 1 } \mathfrak A ) $$

exists, where $ \mathfrak A \lor \mathfrak B $ is the covering whose elements are all the non-empty intersections of the elements of $ \mathfrak A $ and $ \mathfrak B $. The topological entropy $ h _ { \mathop{\rm top} } ( S) $ is defined to be the supremum of $ h ( S, \mathfrak A ) $ over all possible $ \mathfrak A $. There is an equivalent definition in the metric case: For a metric $ \rho $, let $ K _ \epsilon ( X, \rho ) $ denote the largest number of points of $ X $ with pairwise distance greater than $ \epsilon $. Then

$$ h _ { \mathop{\rm top} } ( S) = \ \lim\limits _ {\epsilon \rightarrow 0 } \ \lim\limits _ {n \rightarrow \infty } \ { \frac{1}{n} } \mathop{\rm log} \ K _ \epsilon ( X, \rho _ {n} ), $$

where $ \rho _ {n} ( x, y) = \max _ {0 \leq i \leq n } \rho ( S ^ {i} x, S ^ {i} y) $( cf. [2][4]).

It turns out that

$$ h _ { \mathop{\rm top} } ( S ^ {n} ) = \ n h _ { \mathop{\rm top} } ( S), $$

and if $ S $ is a homeomorphism, then $ h _ { \mathop{\rm top} } ( S ^ {-} 1 ) = h _ { \mathop{\rm top} } ( S) $. Hence it is natural to take the topological entropy of a cascade $ \{ S ^ {n} \} $ to be $ h _ { \mathop{\rm top} } ( S) $. For a topological flow (continuous-time dynamical system) $ \{ S _ {t} \} $ it turns out that

$$ h _ { \mathop{\rm top} } ( S _ {t} ) = \ | t | h _ { \mathop{\rm top} } ( S _ {1} ), $$

so it is natural to take the topological entropy of the flow to be $ h _ { \mathop{\rm top} } ( S _ {1} ) $. In a somewhat different way one can define the topological entropy for other transformation groups (it no longer reduces to the topological entropy of one of the elements of the group; cf. ).

The topological entropy $ h _ { \mathop{\rm top} } ( S) $ coincides with the supremum of the metric entropy $ h _ \mu ( S) $ over all possible normalized invariant Borel measures $ \mu $( cf. [2], [5]–;

for the existence of $ \max h _ \mu $ and the dependence of $ h _ { \mathop{\rm top} } ( S) $ on $ S $). This is a special case of the variational principle, which establishes a topological interpretation of the value

$$ \sup _ \mu \left [ h _ \mu ( S) + \int\limits f d \mu \right ] $$

for a fixed continuous function $ f $( cf. [4], [8], [9]). The topological entropy gives a characteristic of the "complexity" or "diversity" of motions in a dynamical system (cf. [10], [3], [4]). It is also connected in certain cases with the asymptotics (as $ T \rightarrow \infty $) of the number of periodic trajectories (of period $ \leq T $; cf. Periodic trajectory and [3], [4], –[13]). The "entropy conjecture54C70entropy conjecture" asserts that the topological entropy of a diffeomorphism $ S $ of a closed manifold $ W $ is not less than the logarithm of the spectral radius of the linear transformation induced by $ S $ on the homology spaces $ H _ {*} ( W; \mathbf R ) $( cf. , [15]). It has been proved in the $ C ^ \infty $- case, .

References

[1] R.L. Adler, A.G. Konheim, M.H. McAndrew, "Topological entropy" Trans. Amer. Math. Soc. , 114 (1965) pp. 309–319
[2] E.I. Dinaburg, "On the relation between various entropy characteristics of dynamical systems" Math. USSR Izv. , 5 : 2 (1971) pp. 337–378 Izv. Akad. Nauk SSSR, Ser. Mat. , 35 : 2 (1971) pp. 324–366
[3] V.M. Alekseev, "Symbolic dynamics" , Eleventh Mathematical Summer School , Kiev (1976) pp. 5–210 (In Russian)
[4] R. Boywen, "Methods of symbolic dynamics" , Moscow (1979) (In Russian; translated from English) (Collection of papers)
[5] T.N.T. Goodman, "Relating topological entropy and measure entropy" Bull. London Math. Soc. , 3 (1971) pp. 176–180
[6] L.W. Goodwyn, "Comparing topological entropy with measure-theoretic entropy" Amer. J. Math. , 94 (1972) pp. 366–368
[7a] A.T. Tagi-zade, "The entropy of motions of amenable groups" Dokl. Akad. Nauk AzerbSSR , 34 : 6 (1978) pp. 18–22 (In Russian)
[7b] A.T. Tagi-zade, "Entropy characteristics of amenable groups" Dokl. Akad. Nauk AzerbSSR , 34 : 8 (1978) pp. 11–14 (In Russian)
[8] A.M. Stepin, A.T. Tagi-zade, "Variational characterization of the topological pressure of amenable transformation groups" Soviet Math. Dokl. , 22 : 2 (1980) pp. 405–409 Dokl. Akad. Nauk SSSR , 254 : 3 (1980) pp. 545–548
[9] J. Moulin Ollagnier, D. Pinchon, "The variational principle" Studia Math. , 72 (1982) pp. 151–159
[10] A.A. Brudno, "Entropy and the complexity of the trajectories of a dynamical system" Trans. Moscow Math. Soc. , 44 (1982) pp. 127–152 Trudy Moskov. Mat. Obshch. , 44 (1982) pp. 124–149
[11a] A.G. Kushnirenko, "Problems in the general theory of dynamical systems on a manifold" Transl. Amer. Math. Soc. , 116 (1981) pp. 1–42 Ninth Math. Summer School (1976) pp. 52–124
[11b] A.B. Katok, "Dynamical systems with hyperbolic structure" Transl. Amer. Math. Soc. , 116 (1981) pp. 43–96 Ninth Math. Summer School (1976) pp. 125–211
[11c] V.M. Alekseev, "Quasirandom oscillations and qualitative questions in celestial mechanics" Transl. Amer. Math. Soc. , 116 (1981) pp. 97–169 Ninth Math. Summer School (1976) pp. 212–341
[12] A.B. Katok, Ya.G. Sinai, A.M. Stepin, "The theory of dynamical systems and general transformation groups with invariant measure" J. Soviet Math. , 7 : 6 (1977) pp. 974–1065 Itogi Nauk. i Tekhn. Mat. Anal. , 13 (1975) pp. 129–262
[13] A.B. Katok, "Lyapunov exponents, entropy and periodic orbits for diffeomorphisms" Publ. Math. IHES , 51 (1980) pp. 137–173
[14a] A.B. Katok, "The entropy conjecture" D.V. Anosov (ed.) , Smooth dynamical systems , Moscow (1977) pp. 181–203 (In Russian)
[14b] M. Shub, "Dynamical systems, filtrations and entropy" Bull. Amer. Math. Soc. , 80 (1974) pp. 27–41
[15] D. Fried, M. Shub, "Entropy, linearity and chain-recurrence" Publ. Math. IHES , 50 (1979) pp. 203–214
[16] C. Grilleneberger, "Ergodic theory on compact spaces" , Springer (1976)

Comments

Instead of the collection of translations [4] one may consult [a2].

In the above, $ h _ \mu ( S) $ denotes the entropy of $ S $ with respect to the normalized invariant Borel measure $ \mu $( cf. Entropy theory of a dynamical system). The value $ P _ {S} ( f ) = \sup _ \mu [ h _ \mu ( S) + \int f d \mu ] $, where $ \mu $ runs over the set of all normalized invariant Borel measures, is called the pressure of $ f $( with respect to $ S $). If $ \mu $ satisfies $ h _ \mu ( S) + \int f d \mu = P _ {S} ( f ) $( i.e., the sup is a max), then $ \mu $ is called an equilibrium state or Gibbs measure for $ f $( with respect to $ S $). See [a2], also for existence and uniqueness results.

For recent results about the estimation of topological entropy, see [a1] and the references given there.

References

[a1] S.E. Newhouse, "Entropy and volume" Ergod. Th. & Dynam. Syst. , 8 (1988) pp. 283–299 Zbl 0638.58016
[a2] R. Bowen, "Equilibrium states and the ergodic theory of Anosov diffeomorphisms" , Lect. notes in math. , 470 , Springer (1975) Zbl 0308.28010; 2nd ed. (2008) ISBN 978-3-540-77605-5 Zbl 1172.37001
How to Cite This Entry:
Topological entropy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Topological_entropy&oldid=48986
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article