Difference between revisions of "Thom isomorphism"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0926701.png | ||
+ | $#A+1 = 21 n = 0 | ||
+ | $#C+1 = 21 : ~/encyclopedia/old_files/data/T092/T.0902670 Thom isomorphism | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An isomorphism between the (generalized) (co)homology groups of the base space of a vector (sphere) bundle $ \xi $ | |
+ | and the (co)homology groups of its [[Thom space|Thom space]] $ T ( \xi ) $. | ||
− | In the case where | + | Suppose the $ n $- |
+ | dimensional vector bundle $ \xi $ | ||
+ | over a finite cell complex $ X $ | ||
+ | is oriented in some multiplicative generalized cohomology theory $ E ^ {*} $( | ||
+ | cf. [[Generalized cohomology theories|Generalized cohomology theories]]), that is, there exists a [[Thom class|Thom class]] $ u \in \widetilde{E} {} ^ {*} ( T \xi ) $. | ||
+ | Then $ \widetilde{E} {} ^ {*} ( T \xi ) $ | ||
+ | is an $ E ^ {*} ( X) $- | ||
+ | module, and the homomorphism $ \phi : E ^ {i} ( X) \rightarrow \widetilde{E} {} ^ {i + n } ( T \xi ) $, | ||
+ | given by multiplication by the Thom class, is an isomorphism, called the Thom isomorphism (or Thom–Dold isomorphism). | ||
+ | |||
+ | There is a dually-defined isomorphism $ E _ {i} ( X) \rightarrow \widetilde{E} _ {i + n } ( T \xi ) $. | ||
+ | |||
+ | In the case where $ E ^ {*} $ | ||
+ | is the classical cohomology theory $ H ^ {*} $, | ||
+ | the isomorphism is described in [[#References|[1]]], and it was established for an arbitrary theory $ E ^ {*} $ | ||
+ | in [[#References|[2]]]. Moreover, if $ \xi $ | ||
+ | is not oriented in the integral cohomology theory $ H ^ {*} $, | ||
+ | then there is an isomorphism $ H ^ {k} ( X) \cong H ^ {k + n } ( T \xi ; \{ Z \} ) $, | ||
+ | where the right-hand side is the cohomology group with coefficients in the local system of groups $ \{ Z \} $. | ||
+ | More generally, if $ \xi $ | ||
+ | is non-oriented in the cohomology theory $ E ^ {*} $, | ||
+ | there is an isomorphism which generalizes both the Thom isomorphism described above and the Thom–Dold isomorphism for $ E ^ {*} $- | ||
+ | oriented bundles [[#References|[3]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Thom, "Quelques propriétés globales des variétés différentiables" ''Comm. Math. Helv.'' , '''28''' (1954) pp. 17–86</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Dold, "Relations between ordinary and extraordinary homology" , ''Colloq. Algebraic Topology, August 1–10, 1962'' , Inst. Math. Aarhus Univ. (1962) pp. 2–9</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.B. Rudyak, "On the Thom–Dold isomorphism for nonorientable bundles" ''Soviet Math. Dokl.'' , '''22''' (1980) pp. 842–844 ''Dokl. Akad. Nauk. SSSR'' , '''255''' : 6 (1980) pp. 1323–1325</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Thom, "Quelques propriétés globales des variétés différentiables" ''Comm. Math. Helv.'' , '''28''' (1954) pp. 17–86</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Dold, "Relations between ordinary and extraordinary homology" , ''Colloq. Algebraic Topology, August 1–10, 1962'' , Inst. Math. Aarhus Univ. (1962) pp. 2–9</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.B. Rudyak, "On the Thom–Dold isomorphism for nonorientable bundles" ''Soviet Math. Dokl.'' , '''22''' (1980) pp. 842–844 ''Dokl. Akad. Nauk. SSSR'' , '''255''' : 6 (1980) pp. 1323–1325</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975)</TD></TR></table> |
Latest revision as of 08:25, 6 June 2020
An isomorphism between the (generalized) (co)homology groups of the base space of a vector (sphere) bundle $ \xi $
and the (co)homology groups of its Thom space $ T ( \xi ) $.
Suppose the $ n $- dimensional vector bundle $ \xi $ over a finite cell complex $ X $ is oriented in some multiplicative generalized cohomology theory $ E ^ {*} $( cf. Generalized cohomology theories), that is, there exists a Thom class $ u \in \widetilde{E} {} ^ {*} ( T \xi ) $. Then $ \widetilde{E} {} ^ {*} ( T \xi ) $ is an $ E ^ {*} ( X) $- module, and the homomorphism $ \phi : E ^ {i} ( X) \rightarrow \widetilde{E} {} ^ {i + n } ( T \xi ) $, given by multiplication by the Thom class, is an isomorphism, called the Thom isomorphism (or Thom–Dold isomorphism).
There is a dually-defined isomorphism $ E _ {i} ( X) \rightarrow \widetilde{E} _ {i + n } ( T \xi ) $.
In the case where $ E ^ {*} $ is the classical cohomology theory $ H ^ {*} $, the isomorphism is described in [1], and it was established for an arbitrary theory $ E ^ {*} $ in [2]. Moreover, if $ \xi $ is not oriented in the integral cohomology theory $ H ^ {*} $, then there is an isomorphism $ H ^ {k} ( X) \cong H ^ {k + n } ( T \xi ; \{ Z \} ) $, where the right-hand side is the cohomology group with coefficients in the local system of groups $ \{ Z \} $. More generally, if $ \xi $ is non-oriented in the cohomology theory $ E ^ {*} $, there is an isomorphism which generalizes both the Thom isomorphism described above and the Thom–Dold isomorphism for $ E ^ {*} $- oriented bundles [3].
References
[1] | R. Thom, "Quelques propriétés globales des variétés différentiables" Comm. Math. Helv. , 28 (1954) pp. 17–86 |
[2] | A. Dold, "Relations between ordinary and extraordinary homology" , Colloq. Algebraic Topology, August 1–10, 1962 , Inst. Math. Aarhus Univ. (1962) pp. 2–9 |
[3] | Yu.B. Rudyak, "On the Thom–Dold isomorphism for nonorientable bundles" Soviet Math. Dokl. , 22 (1980) pp. 842–844 Dokl. Akad. Nauk. SSSR , 255 : 6 (1980) pp. 1323–1325 |
[4] | R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) |
Thom isomorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thom_isomorphism&oldid=48970