Difference between revisions of "Tensor on a vector space"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0924001.png | ||
+ | $#A+1 = 158 n = 0 | ||
+ | $#C+1 = 158 : ~/encyclopedia/old_files/data/T092/T.0902400 Tensor on a vector space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ V $ | |
+ | over a field $ k $'' | ||
− | where | + | An element $ t $ |
+ | of the vector space | ||
+ | |||
+ | $$ | ||
+ | T ^ {p,q} ( V) = \ | ||
+ | \left ( \otimes ^ { p } V \right ) | ||
+ | \otimes \ | ||
+ | \left ( \otimes ^ { q } V ^ {*} \right ) , | ||
+ | $$ | ||
+ | |||
+ | where $ V ^ {*} = \mathop{\rm Hom} ( V, k) $ | ||
+ | is the dual space of $ V $. | ||
+ | The tensor $ t $ | ||
+ | is said to be $ p $ | ||
+ | times contravariant and $ q $ | ||
+ | times covariant, or to be of type $ ( p, q) $. | ||
+ | The number $ p $ | ||
+ | is called the contravariant valency, and $ q $ | ||
+ | the covariant valency, while the number $ p + q $ | ||
+ | is called the general valency of the tensor $ t $. | ||
+ | The space $ T ^ {0,0} ( V) $ | ||
+ | is identified with $ k $. | ||
+ | Tensors of type $ ( p, 0) $ | ||
+ | are called contravariant, those of the type $ ( 0, q) $ | ||
+ | are called covariant, and the remaining ones are called mixed. | ||
Examples of tensors. | Examples of tensors. | ||
− | 1) A vector of the space | + | 1) A vector of the space $ V $( |
+ | a tensor of type $ ( 1, 0) $). | ||
− | 2) A covector of the space | + | 2) A covector of the space $ V $( |
+ | a tensor of type $ ( 0, 1) $). | ||
3) Any covariant tensor | 3) Any covariant tensor | ||
− | + | $$ | |
+ | t = \ | ||
+ | \sum _ {i = 1 } ^ { s } | ||
+ | h _ {i1} \otimes \dots \otimes h _ {iq} , | ||
+ | $$ | ||
− | where | + | where $ h _ {ij} \in V ^ {*} $, |
+ | defines a $ q $- | ||
+ | linear form $ \widehat{t} $ | ||
+ | on $ V $ | ||
+ | by the formula | ||
− | + | $$ | |
+ | \widehat{t} ( x _ {1} \dots x _ {q} ) = \ | ||
+ | \sum _ {i = 1 } ^ { s } | ||
+ | h _ {i1} ( x _ {1} ) \dots | ||
+ | h _ {iq} ( x _ {q} ); | ||
+ | $$ | ||
− | the mapping | + | the mapping $ t \mapsto \widehat{t} $ |
+ | from the space $ T ^ {0,q} $ | ||
+ | into the space $ L ^ {q} ( V) $ | ||
+ | of all $ q $- | ||
+ | linear forms on $ V $ | ||
+ | is linear and injective; if $ \mathop{\rm dim} V < \infty $, | ||
+ | then this mapping is an isomorphism, since any $ q $- | ||
+ | linear form corresponds to some tensor of type $ ( 0, q) $. | ||
− | 4) Similarly, a contravariant tensor in | + | 4) Similarly, a contravariant tensor in $ T ^ {p,0} ( V) $ |
+ | defines a $ p $- | ||
+ | linear form on $ V ^ {*} $, | ||
+ | and if $ V $ | ||
+ | is finite dimensional, the converse is also true. | ||
5) Every tensor | 5) Every tensor | ||
− | + | $$ | |
+ | t = \ | ||
+ | \sum _ {i = 1 } ^ { s } | ||
+ | x _ {i} \otimes h _ {i} \ | ||
+ | \in T ^ {1,1} ( V), | ||
+ | $$ | ||
− | where | + | where $ x _ {i} \in V $ |
+ | and $ h _ {j} \in V ^ {*} $, | ||
+ | defines a linear transformation $ \widehat{t} $ | ||
+ | of the space $ V $ | ||
+ | given by the formula | ||
− | + | $$ | |
+ | \widehat{t} ( y) = \ | ||
+ | \sum _ {i = 1 } ^ { s } | ||
+ | h _ {i} ( y) x _ {i} ; | ||
+ | $$ | ||
− | if < | + | if $ \mathop{\rm dim} V < \infty $, |
+ | any linear transformation of the space $ V $ | ||
+ | is defined by a tensor of type $ ( 1, 1) $. | ||
− | 6) Similarly, any tensor of type | + | 6) Similarly, any tensor of type $ ( 1, 2) $ |
+ | defines in $ V $ | ||
+ | a bilinear operation, that is, the structure of a $ k $- | ||
+ | algebra. Moreover, if $ \mathop{\rm dim} V < \infty $, | ||
+ | then any $ k $- | ||
+ | algebra structure in $ V $ | ||
+ | is defined by a tensor of type $ ( 1, 2) $, | ||
+ | called the structure tensor of the algebra. | ||
− | Let | + | Let $ V $ |
+ | be finite dimensional, let $ v _ {1} \dots v _ {n} $ | ||
+ | be a basis of it, and let $ v ^ {1} \dots v ^ {n} $ | ||
+ | be the dual basis of the space $ V ^ {*} $. | ||
+ | Then the tensors | ||
− | + | $$ | |
+ | v _ {i _ {1} \dots i _ {p} } ^ {i _ {1} \dots i _ {q} } = \ | ||
+ | v _ {i _ {1} } \otimes \dots \otimes v _ {i _ {p} } \otimes | ||
+ | v ^ {j _ {1} } \otimes \dots \otimes v ^ {j _ {q} } | ||
+ | $$ | ||
− | form a basis of the space | + | form a basis of the space $ T ^ {p,q} ( V) $. |
+ | The components $ t _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots i _ {p} } $ | ||
+ | of a tensor $ t \in T ^ {p,q} ( V) $ | ||
+ | with respect to this basis are also called the components of the tensor $ t $ | ||
+ | with respect to the basis $ v _ {1} \dots v _ {n} $ | ||
+ | of the space $ V $. | ||
+ | For instance, the components of a vector and of a covector coincide with their usual coordinates with respect to the bases $ ( v _ {i} ) $ | ||
+ | and $ ( v ^ {j} ) $; | ||
+ | the components of a tensor of type $ ( 0, 2) $ | ||
+ | coincide with the entries of the matrix corresponding to the bilinear form; the components of a tensor of type $ ( 1, 1) $ | ||
+ | coincide with the entries of the matrix of the corresponding linear transformation, and the components of the structure tensor of an algebra coincide with its structure constants. If $ \widetilde{v} _ {1} \dots \widetilde{v} _ {n} $ | ||
+ | is another basis of $ V $, | ||
+ | with $ \widetilde{v} _ {j} = a _ {j} ^ {i} v _ {i} $, | ||
+ | and $ \| b _ {j} ^ {i} \| = ( \| a _ {j} ^ {i} \| ^ {T} ) ^ {-} 1 $, | ||
+ | then the components $ t _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots i _ {p} } $ | ||
+ | of the tensor $ t $ | ||
+ | in this basis are defined by the formula | ||
− | + | $$ \tag{1 } | |
+ | \widetilde{t} {} _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots j _ {p} } = \ | ||
+ | b _ {k _ {1} } ^ {i _ {1} } \dots | ||
+ | b _ {k _ {p} } ^ {i _ {p} } | ||
+ | a _ {j _ {1} } ^ {l _ {1} } \dots | ||
+ | a _ {j _ {q} } ^ {l _ {q} } | ||
+ | t _ {l _ {1} \dots l _ {q} } ^ {k _ {1} \dots k _ {p} } . | ||
+ | $$ | ||
− | Here, as often happens in tensor calculus, Einstein's [[summation convention]] is applied: with respect to any pair of equal indices of which one is an upper index and the other is a lower index, it is understood that summation from 1 to | + | Here, as often happens in tensor calculus, Einstein's [[summation convention]] is applied: with respect to any pair of equal indices of which one is an upper index and the other is a lower index, it is understood that summation from 1 to $ n $ |
+ | is carried out. Conversely, if a system of $ n ^ {p + q } $ | ||
+ | elements of a field $ k $ | ||
+ | depending on the basis of the space $ V $ | ||
+ | is altered in the transition from one basis to another basis according to the formulas (1), then this system is the set of components of some tensor of type $ ( p, q) $. | ||
− | In the vector space | + | In the vector space $ T ^ {p,q} ( V) $ |
+ | the operations of addition of tensors and of multiplication of a tensor by a scalar from $ k $ | ||
+ | are defined. Under these operations the corresponding components are added, or multiplied by the scalar. The operation of multiplying tensors of different types is also defined; it is introduced as follows. There is a natural isomorphism of vector spaces | ||
− | + | $$ | |
+ | T ^ {p,q} ( V) \otimes | ||
+ | T ^ {r,s} ( V) \cong \ | ||
+ | T ^ {p + r, q + s } ( V), | ||
+ | $$ | ||
mapping | mapping | ||
− | + | $$ | |
+ | ( x _ {1} \otimes \dots \otimes | ||
+ | x _ {p} \otimes h _ {1} \otimes | ||
+ | {} \dots \otimes h _ {q} ) \otimes | ||
+ | $$ | ||
− | + | $$ | |
+ | \otimes | ||
+ | ( x _ {1} ^ \prime \otimes \dots | ||
+ | \otimes x _ {r} ^ \prime \otimes | ||
+ | h _ {1} ^ \prime \otimes \dots \otimes h _ {s} ) | ||
+ | $$ | ||
to | to | ||
− | + | $$ | |
+ | x _ {1} \otimes \dots \otimes | ||
+ | x _ {p} \otimes | ||
+ | x _ {1} ^ \prime \otimes \dots | ||
+ | \otimes x _ {r} ^ \prime \otimes | ||
+ | $$ | ||
− | + | $$ | |
+ | \otimes | ||
+ | h _ {1} \otimes \dots | ||
+ | \otimes h _ {q} \otimes | ||
+ | h _ {1} ^ \prime \otimes \dots | ||
+ | \otimes h _ {s} ^ \prime . | ||
+ | $$ | ||
− | Consequently, for any | + | Consequently, for any $ t \in T ^ {p,q} ( V) $ |
+ | and $ u \in T ^ {r,s} ( V) $ | ||
+ | the element $ v = t \otimes u $ | ||
+ | can be regarded as a tensor of type $ ( p + r, q + s) $ | ||
+ | and is called the tensor product of $ t $ | ||
+ | and $ u $. | ||
+ | The components of the product are computed according to the formula | ||
− | + | $$ | |
+ | v _ {j _ {1} \dots j _ {q + s } } ^ {i _ {1} \dots i _ {p + r } } = \ | ||
+ | t _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots i _ {p} } | ||
+ | u _ {j _ {q + 1 } \dots j _ {q + s } } ^ {i _ {p + 1 } \dots i _ {p + r } } . | ||
+ | $$ | ||
− | Let | + | Let $ p > 0 $, |
+ | $ q > 0 $, | ||
+ | and let the numbers $ \alpha $ | ||
+ | and $ \beta $ | ||
+ | be fixed with $ 1 \leq \alpha \leq p $ | ||
+ | and $ 1 \leq \beta \leq q $. | ||
+ | Then there is a well-defined mapping $ Y _ \beta ^ \alpha : T ^ {p,q} ( V) \rightarrow T ^ {p - 1, q - 1 } ( V) $ | ||
+ | such that | ||
− | + | $$ | |
+ | Y _ \beta ^ \alpha | ||
+ | ( x _ {1} \otimes \dots \otimes x _ {p} \otimes | ||
+ | h _ {1} \otimes \dots \otimes h _ {q} ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | h _ \beta ( x _ \alpha ) x _ {1} \otimes \dots | ||
+ | \otimes x _ {\alpha - 1 } | ||
+ | \otimes x _ {\alpha + 1 } | ||
+ | \otimes \dots \otimes | ||
+ | x _ {p} \otimes | ||
+ | $$ | ||
− | + | $$ | |
+ | \otimes | ||
+ | h _ {1} \otimes \dots \otimes | ||
+ | h _ {\beta - 1 } | ||
+ | \otimes h _ {\beta + 1 } | ||
+ | \otimes \dots \otimes h _ {q} . | ||
+ | $$ | ||
− | It is called contraction in the | + | It is called contraction in the $ \alpha $- |
+ | th contravariant and the $ \beta $- | ||
+ | th covariant indices. In components, the contraction is written in the form | ||
− | + | $$ | |
+ | ( Y _ \beta ^ \alpha t) _ {j _ {1} \dots j _ {q - 1 } } ^ {i _ {1} \dots i _ {p - 1 } } = \ | ||
+ | t _ {j _ {1} \dots j _ {\beta - 1 } | ||
+ | ij _ {\beta + 1 } \dots j _ {q} } ^ {i _ {1} \dots i _ {\alpha - 1 } | ||
+ | ii _ {\alpha + 1 } \dots i _ {p} } . | ||
+ | $$ | ||
− | For instance, the contraction | + | For instance, the contraction $ Y _ {1} ^ {1} t $ |
+ | of a tensor of type $ ( 1, 1) $ | ||
+ | is the trace of the corresponding linear transformation. | ||
− | A tensor is similarly defined on an arbitrary unitary module | + | A tensor is similarly defined on an arbitrary unitary module $ V $ |
+ | over an associative commutative ring with a unit. The stated examples and properties of tensors are transferred, with corresponding changes, to this case, it being sometimes necessary to assume that $ V $ | ||
+ | is a free or a finitely-generated free module. | ||
− | Let a non-degenerate bilinear form | + | Let a non-degenerate bilinear form $ g $ |
+ | be fixed in a finite-dimensional vector space $ V $ | ||
+ | over a field $ k $( | ||
+ | for example, $ V $ | ||
+ | is a Euclidean or pseudo-Euclidean space over $ \mathbf R $); | ||
+ | in this case the form $ g $ | ||
+ | is called a metric tensor. A metric tensor defines an isomorphism $ \gamma : V \rightarrow V ^ {*} $ | ||
+ | by the formula | ||
− | + | $$ | |
+ | \gamma ( x) ( y) = g ( x, y),\ \ | ||
+ | x, y \in V. | ||
+ | $$ | ||
− | Let | + | Let $ p > 0 $, |
+ | and let the index $ \alpha $, | ||
+ | $ 1 \leq \alpha \leq p $, | ||
+ | be fixed. Then the formula | ||
− | + | $$ | |
+ | x _ {1} \otimes \dots \otimes | ||
+ | x _ {p} \otimes | ||
+ | h _ {1} \otimes \dots \otimes | ||
+ | h _ {q\ } \mapsto | ||
+ | $$ | ||
− | + | $$ | |
+ | \mapsto \ | ||
+ | x _ {1} \otimes \dots \otimes | ||
+ | x _ {\alpha - 1 } \otimes x _ {\alpha + 1 } \otimes \dots | ||
+ | \otimes x _ {p} \otimes | ||
+ | $$ | ||
− | + | $$ | |
+ | \otimes | ||
+ | \gamma ( x _ \alpha ) | ||
+ | \otimes h _ {1} \otimes \dots | ||
+ | \otimes h _ {q} $$ | ||
− | defines an isomorphism | + | defines an isomorphism $ \gamma ^ \alpha : T ^ {p,q} ( V) \rightarrow T ^ {p - 1, q + 1 } ( V) $, |
+ | called lowering of the $ \alpha $- | ||
+ | th contravariant index. In other terms, | ||
− | + | $$ | |
+ | \gamma ^ \alpha ( t) = \ | ||
+ | Y _ {1} ^ \alpha | ||
+ | ( g \otimes t). | ||
+ | $$ | ||
In components, lowering an index has the form | In components, lowering an index has the form | ||
− | + | $$ | |
+ | \gamma ^ \alpha ( t) _ {j _ {1} \dots j _ {q + 1 } } ^ {i _ {1} \dots i _ {q - 1 } } = \ | ||
+ | g _ { ij _ 1 } t _ {j _ {2} \dots j _ {q + 1 } } ^ {i _ {1} \dots i _ {\alpha - 1 } | ||
+ | ii _ {\alpha + 1 } \dots i _ {p - 1 } } . | ||
+ | $$ | ||
− | Similarly one defines the isomorphism of raising the | + | Similarly one defines the isomorphism of raising the $ \beta $- |
+ | th covariant index $ ( 1 \leq \beta \leq q) $: | ||
− | + | $$ | |
+ | \gamma _ \beta : \ | ||
+ | x _ {1} \otimes \dots \otimes | ||
+ | x _ {p} \otimes | ||
+ | h _ {1} \otimes \dots \otimes | ||
+ | h _ {q\ } \mapsto | ||
+ | $$ | ||
− | + | $$ | |
+ | \mapsto \ | ||
+ | x _ {1} \otimes \dots \otimes | ||
+ | x _ {p} \otimes \gamma ^ {-} 1 ( h _ \beta ) \otimes | ||
+ | $$ | ||
− | + | $$ | |
+ | \otimes | ||
+ | h _ {1} \otimes \dots \otimes | ||
+ | h _ {\beta - 1 } \otimes h _ {\beta + 1 } | ||
+ | \otimes \dots \otimes h _ {q} , | ||
+ | $$ | ||
− | which maps | + | which maps $ T ^ {p,q} ( V) $ |
+ | onto $ T ^ {p + 1, q - 1 } ( V) $. | ||
+ | In components, raising an index is written in the form | ||
− | + | $$ | |
+ | \gamma _ \beta ( t) _ {j _ {1} \dots j _ {q - 1 } } ^ {i _ {1} \dots i _ {p + 1 } } = \ | ||
+ | g ^ {ji _ {p + 1 } } | ||
+ | t _ {j _ {1} \dots j _ {\beta - 1 } | ||
+ | ij _ \beta \dots j _ {q - 1 } } ^ {i _ {1} \dots i _ {p} } , | ||
+ | $$ | ||
− | where | + | where $ \| g ^ {kl} \| = (\| g _ {ij} \| ^ {T} ) ^ {-} 1 $. |
+ | In particular, raising at first the first, and then also the remaining covariant index of the metric tensor $ g $ | ||
+ | leads to a tensor of type $ ( 2, 0) $ | ||
+ | with components $ g ^ {kl} $( | ||
+ | a contravariant metric tensor). Sometimes the lowered (raised) index is not moved to the first (last) place, but is written in the same place in the lower (upper) group of indices, a point being put in the empty place which arises. For instance, for $ t \in T ^ {2,0} ( V) $ | ||
+ | the components of the tensor $ \gamma ^ {2} ( t) $ | ||
+ | are written in the form $ t _ {j} ^ {i. } = g _ {kj} t ^ {ik} $. | ||
− | Any linear mapping | + | Any linear mapping $ f: V \rightarrow W $ |
+ | of vector spaces over $ k $ | ||
+ | defines in a natural way linear mappings | ||
− | + | $$ | |
+ | T ^ {p,0} ( f ) = \ | ||
+ | \otimes ^ { p } f: \ | ||
+ | T ^ {p,0} ( V) \rightarrow T ^ {p,0} ( W) | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | T ^ {q,0} ( f ^ { * } ) = \ | ||
+ | \otimes ^ { q } f ^ { * } : \ | ||
+ | T ^ {0,q} ( W) \rightarrow T ^ {0,q} ( V). | ||
+ | $$ | ||
− | If | + | If $ f $ |
+ | is an isomorphism, the linear mapping | ||
− | + | $$ | |
+ | T ^ {p,q} ( f ): \ | ||
+ | T ^ {p,q} ( V) \rightarrow T ^ {p,q} ( W) | ||
+ | $$ | ||
− | is also defined and | + | is also defined and $ T ^ {0,q} ( f ) = T ^ {q,0} ( f ^ { * } ) ^ {-} 1 $. |
+ | The correspondence $ f \mapsto T ^ {p,q} ( f ) $ | ||
+ | has functorial properties. In particular, it defines a linear representation $ a \mapsto T ^ {p,q} ( a) $ | ||
+ | of the group $ \mathop{\rm GL} ( V) $ | ||
+ | in the space $ T ^ {p,q} ( V) $( | ||
+ | the tensor representation). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Gel'fand, "Lectures on linear algebra" , Interscience (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.M. Postnikov, "Linear algebra and differential geometry" , Moscow (1979) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Gel'fand, "Lectures on linear algebra" , Interscience (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.M. Postnikov, "Linear algebra and differential geometry" , Moscow (1979) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR></table> |
Latest revision as of 08:25, 6 June 2020
$ V $
over a field $ k $
An element $ t $ of the vector space
$$ T ^ {p,q} ( V) = \ \left ( \otimes ^ { p } V \right ) \otimes \ \left ( \otimes ^ { q } V ^ {*} \right ) , $$
where $ V ^ {*} = \mathop{\rm Hom} ( V, k) $ is the dual space of $ V $. The tensor $ t $ is said to be $ p $ times contravariant and $ q $ times covariant, or to be of type $ ( p, q) $. The number $ p $ is called the contravariant valency, and $ q $ the covariant valency, while the number $ p + q $ is called the general valency of the tensor $ t $. The space $ T ^ {0,0} ( V) $ is identified with $ k $. Tensors of type $ ( p, 0) $ are called contravariant, those of the type $ ( 0, q) $ are called covariant, and the remaining ones are called mixed.
Examples of tensors.
1) A vector of the space $ V $( a tensor of type $ ( 1, 0) $).
2) A covector of the space $ V $( a tensor of type $ ( 0, 1) $).
3) Any covariant tensor
$$ t = \ \sum _ {i = 1 } ^ { s } h _ {i1} \otimes \dots \otimes h _ {iq} , $$
where $ h _ {ij} \in V ^ {*} $, defines a $ q $- linear form $ \widehat{t} $ on $ V $ by the formula
$$ \widehat{t} ( x _ {1} \dots x _ {q} ) = \ \sum _ {i = 1 } ^ { s } h _ {i1} ( x _ {1} ) \dots h _ {iq} ( x _ {q} ); $$
the mapping $ t \mapsto \widehat{t} $ from the space $ T ^ {0,q} $ into the space $ L ^ {q} ( V) $ of all $ q $- linear forms on $ V $ is linear and injective; if $ \mathop{\rm dim} V < \infty $, then this mapping is an isomorphism, since any $ q $- linear form corresponds to some tensor of type $ ( 0, q) $.
4) Similarly, a contravariant tensor in $ T ^ {p,0} ( V) $ defines a $ p $- linear form on $ V ^ {*} $, and if $ V $ is finite dimensional, the converse is also true.
5) Every tensor
$$ t = \ \sum _ {i = 1 } ^ { s } x _ {i} \otimes h _ {i} \ \in T ^ {1,1} ( V), $$
where $ x _ {i} \in V $ and $ h _ {j} \in V ^ {*} $, defines a linear transformation $ \widehat{t} $ of the space $ V $ given by the formula
$$ \widehat{t} ( y) = \ \sum _ {i = 1 } ^ { s } h _ {i} ( y) x _ {i} ; $$
if $ \mathop{\rm dim} V < \infty $, any linear transformation of the space $ V $ is defined by a tensor of type $ ( 1, 1) $.
6) Similarly, any tensor of type $ ( 1, 2) $ defines in $ V $ a bilinear operation, that is, the structure of a $ k $- algebra. Moreover, if $ \mathop{\rm dim} V < \infty $, then any $ k $- algebra structure in $ V $ is defined by a tensor of type $ ( 1, 2) $, called the structure tensor of the algebra.
Let $ V $ be finite dimensional, let $ v _ {1} \dots v _ {n} $ be a basis of it, and let $ v ^ {1} \dots v ^ {n} $ be the dual basis of the space $ V ^ {*} $. Then the tensors
$$ v _ {i _ {1} \dots i _ {p} } ^ {i _ {1} \dots i _ {q} } = \ v _ {i _ {1} } \otimes \dots \otimes v _ {i _ {p} } \otimes v ^ {j _ {1} } \otimes \dots \otimes v ^ {j _ {q} } $$
form a basis of the space $ T ^ {p,q} ( V) $. The components $ t _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots i _ {p} } $ of a tensor $ t \in T ^ {p,q} ( V) $ with respect to this basis are also called the components of the tensor $ t $ with respect to the basis $ v _ {1} \dots v _ {n} $ of the space $ V $. For instance, the components of a vector and of a covector coincide with their usual coordinates with respect to the bases $ ( v _ {i} ) $ and $ ( v ^ {j} ) $; the components of a tensor of type $ ( 0, 2) $ coincide with the entries of the matrix corresponding to the bilinear form; the components of a tensor of type $ ( 1, 1) $ coincide with the entries of the matrix of the corresponding linear transformation, and the components of the structure tensor of an algebra coincide with its structure constants. If $ \widetilde{v} _ {1} \dots \widetilde{v} _ {n} $ is another basis of $ V $, with $ \widetilde{v} _ {j} = a _ {j} ^ {i} v _ {i} $, and $ \| b _ {j} ^ {i} \| = ( \| a _ {j} ^ {i} \| ^ {T} ) ^ {-} 1 $, then the components $ t _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots i _ {p} } $ of the tensor $ t $ in this basis are defined by the formula
$$ \tag{1 } \widetilde{t} {} _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots j _ {p} } = \ b _ {k _ {1} } ^ {i _ {1} } \dots b _ {k _ {p} } ^ {i _ {p} } a _ {j _ {1} } ^ {l _ {1} } \dots a _ {j _ {q} } ^ {l _ {q} } t _ {l _ {1} \dots l _ {q} } ^ {k _ {1} \dots k _ {p} } . $$
Here, as often happens in tensor calculus, Einstein's summation convention is applied: with respect to any pair of equal indices of which one is an upper index and the other is a lower index, it is understood that summation from 1 to $ n $ is carried out. Conversely, if a system of $ n ^ {p + q } $ elements of a field $ k $ depending on the basis of the space $ V $ is altered in the transition from one basis to another basis according to the formulas (1), then this system is the set of components of some tensor of type $ ( p, q) $.
In the vector space $ T ^ {p,q} ( V) $ the operations of addition of tensors and of multiplication of a tensor by a scalar from $ k $ are defined. Under these operations the corresponding components are added, or multiplied by the scalar. The operation of multiplying tensors of different types is also defined; it is introduced as follows. There is a natural isomorphism of vector spaces
$$ T ^ {p,q} ( V) \otimes T ^ {r,s} ( V) \cong \ T ^ {p + r, q + s } ( V), $$
mapping
$$ ( x _ {1} \otimes \dots \otimes x _ {p} \otimes h _ {1} \otimes {} \dots \otimes h _ {q} ) \otimes $$
$$ \otimes ( x _ {1} ^ \prime \otimes \dots \otimes x _ {r} ^ \prime \otimes h _ {1} ^ \prime \otimes \dots \otimes h _ {s} ) $$
to
$$ x _ {1} \otimes \dots \otimes x _ {p} \otimes x _ {1} ^ \prime \otimes \dots \otimes x _ {r} ^ \prime \otimes $$
$$ \otimes h _ {1} \otimes \dots \otimes h _ {q} \otimes h _ {1} ^ \prime \otimes \dots \otimes h _ {s} ^ \prime . $$
Consequently, for any $ t \in T ^ {p,q} ( V) $ and $ u \in T ^ {r,s} ( V) $ the element $ v = t \otimes u $ can be regarded as a tensor of type $ ( p + r, q + s) $ and is called the tensor product of $ t $ and $ u $. The components of the product are computed according to the formula
$$ v _ {j _ {1} \dots j _ {q + s } } ^ {i _ {1} \dots i _ {p + r } } = \ t _ {j _ {1} \dots j _ {q} } ^ {i _ {1} \dots i _ {p} } u _ {j _ {q + 1 } \dots j _ {q + s } } ^ {i _ {p + 1 } \dots i _ {p + r } } . $$
Let $ p > 0 $, $ q > 0 $, and let the numbers $ \alpha $ and $ \beta $ be fixed with $ 1 \leq \alpha \leq p $ and $ 1 \leq \beta \leq q $. Then there is a well-defined mapping $ Y _ \beta ^ \alpha : T ^ {p,q} ( V) \rightarrow T ^ {p - 1, q - 1 } ( V) $ such that
$$ Y _ \beta ^ \alpha ( x _ {1} \otimes \dots \otimes x _ {p} \otimes h _ {1} \otimes \dots \otimes h _ {q} ) = $$
$$ = \ h _ \beta ( x _ \alpha ) x _ {1} \otimes \dots \otimes x _ {\alpha - 1 } \otimes x _ {\alpha + 1 } \otimes \dots \otimes x _ {p} \otimes $$
$$ \otimes h _ {1} \otimes \dots \otimes h _ {\beta - 1 } \otimes h _ {\beta + 1 } \otimes \dots \otimes h _ {q} . $$
It is called contraction in the $ \alpha $- th contravariant and the $ \beta $- th covariant indices. In components, the contraction is written in the form
$$ ( Y _ \beta ^ \alpha t) _ {j _ {1} \dots j _ {q - 1 } } ^ {i _ {1} \dots i _ {p - 1 } } = \ t _ {j _ {1} \dots j _ {\beta - 1 } ij _ {\beta + 1 } \dots j _ {q} } ^ {i _ {1} \dots i _ {\alpha - 1 } ii _ {\alpha + 1 } \dots i _ {p} } . $$
For instance, the contraction $ Y _ {1} ^ {1} t $ of a tensor of type $ ( 1, 1) $ is the trace of the corresponding linear transformation.
A tensor is similarly defined on an arbitrary unitary module $ V $ over an associative commutative ring with a unit. The stated examples and properties of tensors are transferred, with corresponding changes, to this case, it being sometimes necessary to assume that $ V $ is a free or a finitely-generated free module.
Let a non-degenerate bilinear form $ g $ be fixed in a finite-dimensional vector space $ V $ over a field $ k $( for example, $ V $ is a Euclidean or pseudo-Euclidean space over $ \mathbf R $); in this case the form $ g $ is called a metric tensor. A metric tensor defines an isomorphism $ \gamma : V \rightarrow V ^ {*} $ by the formula
$$ \gamma ( x) ( y) = g ( x, y),\ \ x, y \in V. $$
Let $ p > 0 $, and let the index $ \alpha $, $ 1 \leq \alpha \leq p $, be fixed. Then the formula
$$ x _ {1} \otimes \dots \otimes x _ {p} \otimes h _ {1} \otimes \dots \otimes h _ {q\ } \mapsto $$
$$ \mapsto \ x _ {1} \otimes \dots \otimes x _ {\alpha - 1 } \otimes x _ {\alpha + 1 } \otimes \dots \otimes x _ {p} \otimes $$
$$ \otimes \gamma ( x _ \alpha ) \otimes h _ {1} \otimes \dots \otimes h _ {q} $$
defines an isomorphism $ \gamma ^ \alpha : T ^ {p,q} ( V) \rightarrow T ^ {p - 1, q + 1 } ( V) $, called lowering of the $ \alpha $- th contravariant index. In other terms,
$$ \gamma ^ \alpha ( t) = \ Y _ {1} ^ \alpha ( g \otimes t). $$
In components, lowering an index has the form
$$ \gamma ^ \alpha ( t) _ {j _ {1} \dots j _ {q + 1 } } ^ {i _ {1} \dots i _ {q - 1 } } = \ g _ { ij _ 1 } t _ {j _ {2} \dots j _ {q + 1 } } ^ {i _ {1} \dots i _ {\alpha - 1 } ii _ {\alpha + 1 } \dots i _ {p - 1 } } . $$
Similarly one defines the isomorphism of raising the $ \beta $- th covariant index $ ( 1 \leq \beta \leq q) $:
$$ \gamma _ \beta : \ x _ {1} \otimes \dots \otimes x _ {p} \otimes h _ {1} \otimes \dots \otimes h _ {q\ } \mapsto $$
$$ \mapsto \ x _ {1} \otimes \dots \otimes x _ {p} \otimes \gamma ^ {-} 1 ( h _ \beta ) \otimes $$
$$ \otimes h _ {1} \otimes \dots \otimes h _ {\beta - 1 } \otimes h _ {\beta + 1 } \otimes \dots \otimes h _ {q} , $$
which maps $ T ^ {p,q} ( V) $ onto $ T ^ {p + 1, q - 1 } ( V) $. In components, raising an index is written in the form
$$ \gamma _ \beta ( t) _ {j _ {1} \dots j _ {q - 1 } } ^ {i _ {1} \dots i _ {p + 1 } } = \ g ^ {ji _ {p + 1 } } t _ {j _ {1} \dots j _ {\beta - 1 } ij _ \beta \dots j _ {q - 1 } } ^ {i _ {1} \dots i _ {p} } , $$
where $ \| g ^ {kl} \| = (\| g _ {ij} \| ^ {T} ) ^ {-} 1 $. In particular, raising at first the first, and then also the remaining covariant index of the metric tensor $ g $ leads to a tensor of type $ ( 2, 0) $ with components $ g ^ {kl} $( a contravariant metric tensor). Sometimes the lowered (raised) index is not moved to the first (last) place, but is written in the same place in the lower (upper) group of indices, a point being put in the empty place which arises. For instance, for $ t \in T ^ {2,0} ( V) $ the components of the tensor $ \gamma ^ {2} ( t) $ are written in the form $ t _ {j} ^ {i. } = g _ {kj} t ^ {ik} $.
Any linear mapping $ f: V \rightarrow W $ of vector spaces over $ k $ defines in a natural way linear mappings
$$ T ^ {p,0} ( f ) = \ \otimes ^ { p } f: \ T ^ {p,0} ( V) \rightarrow T ^ {p,0} ( W) $$
and
$$ T ^ {q,0} ( f ^ { * } ) = \ \otimes ^ { q } f ^ { * } : \ T ^ {0,q} ( W) \rightarrow T ^ {0,q} ( V). $$
If $ f $ is an isomorphism, the linear mapping
$$ T ^ {p,q} ( f ): \ T ^ {p,q} ( V) \rightarrow T ^ {p,q} ( W) $$
is also defined and $ T ^ {0,q} ( f ) = T ^ {q,0} ( f ^ { * } ) ^ {-} 1 $. The correspondence $ f \mapsto T ^ {p,q} ( f ) $ has functorial properties. In particular, it defines a linear representation $ a \mapsto T ^ {p,q} ( a) $ of the group $ \mathop{\rm GL} ( V) $ in the space $ T ^ {p,q} ( V) $( the tensor representation).
References
[1] | N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) |
[2] | I.M. Gel'fand, "Lectures on linear algebra" , Interscience (1961) (Translated from Russian) |
[3] | A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian) |
[4] | M.M. Postnikov, "Linear algebra and differential geometry" , Moscow (1979) (In Russian) |
[5] | P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
Tensor on a vector space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tensor_on_a_vector_space&oldid=48957