Namespaces
Variants
Actions

Difference between revisions of "Suspension"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a topological space (CW-complex) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914901.png" />''
+
<!--
 +
s0914901.png
 +
$#A+1 = 33 n = 0
 +
$#C+1 = 33 : ~/encyclopedia/old_files/data/S091/S.0901490 Suspension
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The space ([[CW-complex|CW-complex]])
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914902.png" /></td> </tr></table>
+
''of a topological space (CW-complex)  $  X $''
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914903.png" /> is the unit interval and the slant line denotes the operation of identifying a subspace with one point. The suspension of a [[Pointed space|pointed space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914904.png" /> is defined to be the pointed space
+
The space ([[CW-complex|CW-complex]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914905.png" /></td> </tr></table>
+
$$
 +
( X \times [ 0, 1]) / [( X \times \{ 0 \} )  \cup
 +
( X \times \{ 1 \} )] ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914906.png" /></td> </tr></table>
+
where  $  [ 0, 1] $
 +
is the unit interval and the slant line denotes the operation of identifying a subspace with one point. The suspension of a [[Pointed space|pointed space]]  $  ( X, x _ {0} ) $
 +
is defined to be the pointed space
  
This is also known as a reduced or contracted suspension. A suspension is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914907.png" /> (or sometimes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914908.png" />). The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s0914909.png" /> defines a functor from the category of topological (pointed) spaces into itself.
+
$$
 +
S  ^ {1} \wedge X =
 +
$$
  
Since the suspension operation is a functor, one can define a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149010.png" />, which is also called the suspension. This homomorphism is identical with the composite of the homomorphism induced by the imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149011.png" /> and the Hurewicz isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149013.png" /> is the operation of forming loop spaces (cf. [[Loop space|Loop space]]). For any [[Homology theory|homology theory]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149014.png" /> (cohomology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149015.png" />) one has an isomorphism
+
$$
 +
= \
 +
( X \times [ 0, 1])  / [ ( X \times \{ 0 \} ) \cup
 +
( X \times \{ 1 \} ) \cup ( x _ {0} \times [ 0, 1])].
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149016.png" /></td> </tr></table>
+
This is also known as a reduced or contracted suspension. A suspension is denoted by  $  SX $(
 +
or sometimes  $  \Sigma X $).  
 +
The correspondence  $  X \mapsto SX $
 +
defines a functor from the category of topological (pointed) spaces into itself.
  
that coincides with the connecting homomorphism of the exact sequence of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149018.png" /> is the [[Cone|cone]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149019.png" />. The image of a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149020.png" /> under this isomorphism is known as the suspension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149021.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149022.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149023.png" />).
+
Since the suspension operation is a functor, one can define a homomorphism  $  \pi _ {n} ( X) \rightarrow \pi _ {n + 1 }  ( SX) $,
 +
which is also called the suspension. This homomorphism is identical with the composite of the homomorphism induced by the imbedding  $  X \rightarrow \Omega SX $
 +
and the Hurewicz isomorphism  $  \pi _ {n} ( \Omega SX) \cong \pi _ {n + 1 }  ( SX) $,  
 +
where $  \Omega $
 +
is the operation of forming loop spaces (cf. [[Loop space|Loop space]]). For any [[Homology theory|homology theory]]  $  h _ {*} $(
 +
cohomology theory  $  h  ^ {*} $)  
 +
one has an isomorphism
  
The suspension of a [[Cohomology operation|cohomology operation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149024.png" /> is defined to be the cohomology operation whose action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149025.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149026.png" />, and whose action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149027.png" /> coincides with that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149028.png" />.
+
$$
 +
\delta : {\widetilde{h}  } {}  ^ {n} ( X)  \cong \
 +
{\widetilde{h}  } {} ^ {n + 1 } ( SX)  = \
 +
h ^ {n + 1 } ( CX, X)
 +
$$
  
 +
that coincides with the connecting homomorphism of the exact sequence of the pair  $  ( CX, X) $,
 +
where  $  CX $
 +
is the [[Cone|cone]] over  $  X $.
 +
The image of a class  $  x \in h  ^ {n} ( X) $
 +
under this isomorphism is known as the suspension of  $  x $
 +
and is denoted by  $  \delta x $(
 +
or  $  Sx $).
  
 +
The suspension of a [[Cohomology operation|cohomology operation]]  $  a $
 +
is defined to be the cohomology operation whose action on  $  {\widetilde{h}  } {}  ^ {*} $
 +
coincides with  $  \delta  ^ {-} 1 a \delta $,
 +
and whose action on  $  h  ^ {*} ( pt) $
 +
coincides with that of  $  a $.
  
 
====Comments====
 
====Comments====
 
The suspension functor and the [[Loop space|loop space]] functor on the category of pointed spaces are adjoint:
 
The suspension functor and the [[Loop space|loop space]] functor on the category of pointed spaces are adjoint:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149029.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm Top} ( SX, Y)  \cong  \mathop{\rm Top} ( X, \Omega Y) .
 +
$$
  
The bijection above associates to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149030.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149031.png" /> which associates the loop <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149032.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s091/s091490/s09149033.png" />. This adjointness is compatible with the homology and thus also defines an adjunction for the category of pointed topological spaces and homotopy classes of mappings.
+
The bijection above associates to $  f: SX \rightarrow Y $
 +
the mapping $  g: X \rightarrow \Omega Y $
 +
which associates the loop $  g( x)( t)= f( x, t) $
 +
to $  x \in X $.  
 +
This adjointness is compatible with the homology and thus also defines an adjunction for the category of pointed topological spaces and homotopy classes of mappings.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. Chapt. 2</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. Chapt. 2</TD></TR></table>

Latest revision as of 08:24, 6 June 2020


of a topological space (CW-complex) $ X $

The space (CW-complex)

$$ ( X \times [ 0, 1]) / [( X \times \{ 0 \} ) \cup ( X \times \{ 1 \} )] , $$

where $ [ 0, 1] $ is the unit interval and the slant line denotes the operation of identifying a subspace with one point. The suspension of a pointed space $ ( X, x _ {0} ) $ is defined to be the pointed space

$$ S ^ {1} \wedge X = $$

$$ = \ ( X \times [ 0, 1]) / [ ( X \times \{ 0 \} ) \cup ( X \times \{ 1 \} ) \cup ( x _ {0} \times [ 0, 1])]. $$

This is also known as a reduced or contracted suspension. A suspension is denoted by $ SX $( or sometimes $ \Sigma X $). The correspondence $ X \mapsto SX $ defines a functor from the category of topological (pointed) spaces into itself.

Since the suspension operation is a functor, one can define a homomorphism $ \pi _ {n} ( X) \rightarrow \pi _ {n + 1 } ( SX) $, which is also called the suspension. This homomorphism is identical with the composite of the homomorphism induced by the imbedding $ X \rightarrow \Omega SX $ and the Hurewicz isomorphism $ \pi _ {n} ( \Omega SX) \cong \pi _ {n + 1 } ( SX) $, where $ \Omega $ is the operation of forming loop spaces (cf. Loop space). For any homology theory $ h _ {*} $( cohomology theory $ h ^ {*} $) one has an isomorphism

$$ \delta : {\widetilde{h} } {} ^ {n} ( X) \cong \ {\widetilde{h} } {} ^ {n + 1 } ( SX) = \ h ^ {n + 1 } ( CX, X) $$

that coincides with the connecting homomorphism of the exact sequence of the pair $ ( CX, X) $, where $ CX $ is the cone over $ X $. The image of a class $ x \in h ^ {n} ( X) $ under this isomorphism is known as the suspension of $ x $ and is denoted by $ \delta x $( or $ Sx $).

The suspension of a cohomology operation $ a $ is defined to be the cohomology operation whose action on $ {\widetilde{h} } {} ^ {*} $ coincides with $ \delta ^ {-} 1 a \delta $, and whose action on $ h ^ {*} ( pt) $ coincides with that of $ a $.

Comments

The suspension functor and the loop space functor on the category of pointed spaces are adjoint:

$$ \mathop{\rm Top} ( SX, Y) \cong \mathop{\rm Top} ( X, \Omega Y) . $$

The bijection above associates to $ f: SX \rightarrow Y $ the mapping $ g: X \rightarrow \Omega Y $ which associates the loop $ g( x)( t)= f( x, t) $ to $ x \in X $. This adjointness is compatible with the homology and thus also defines an adjunction for the category of pointed topological spaces and homotopy classes of mappings.

References

[a1] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. Chapt. 2
How to Cite This Entry:
Suspension. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Suspension&oldid=48915
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article