Difference between revisions of "Spherical functions"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0866701.png | ||
+ | $#A+1 = 85 n = 0 | ||
+ | $#C+1 = 85 : ~/encyclopedia/old_files/data/S086/S.0806670 Spherical functions, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''solid spherical harmonics, associated Legendre functions of the first and second kinds'' | ''solid spherical harmonics, associated Legendre functions of the first and second kinds'' | ||
− | Two linearly independent solutions | + | Two linearly independent solutions $ P _ \nu ^ \mu ( z) $ |
+ | and $ Q _ \nu ^ \mu ( z) $ | ||
+ | of the differential equation | ||
+ | |||
+ | $$ | ||
+ | ( 1- z) ^ {2} | ||
+ | \frac{d ^ {2} y }{dz ^ {2} } | ||
+ | - 2z | ||
+ | \frac{dy}{dz} | ||
+ | + \left [ \nu ( \nu + 1) - | ||
+ | |||
+ | \frac{\mu ^ {2} }{1- z ^ {2} } | ||
+ | \right ] = 0, | ||
+ | $$ | ||
+ | |||
+ | where $ \mu $ | ||
+ | and $ \nu $ | ||
+ | are complex constants, which arises in the solution of a class of partial differential equations by the method of separation of variables (cf. [[Separation of variables, method of|Separation of variables, method of]]). The points $ z = \pm 1 , \infty $ | ||
+ | are branching points of the solutions, in general. The spherical functions are particular cases of the hypergeometric functions (cf. [[Hypergeometric function|Hypergeometric function]]): | ||
+ | |||
+ | $$ | ||
+ | P _ \nu ^ \mu ( z) = | ||
+ | \frac{1}{\Gamma ( 1- \mu ) } | ||
+ | \left ( z+ | ||
+ | \frac{1}{z-} | ||
+ | 1 \right ) ^ {\mu /2 } {} _ {2} F _ {1} \left ( - \nu , \nu + 1; 1- \mu ; 1- | ||
+ | \frac{z}{2} | ||
+ | \right ) | ||
+ | $$ | ||
− | + | $$ | |
+ | \left ( \mathop{\rm arg} z+ | ||
+ | \frac{1}{z-} | ||
+ | 1 = 0 \ | ||
+ | \textrm{ if } \mathop{\rm Im} z = 0, z > 1 \right ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | Q _ \nu ^ \mu ( z) = | ||
+ | \frac{e ^ {\mu \pi i } \sqrt \pi | ||
+ | \Gamma ( \mu + \nu + 1) }{2 ^ {\nu + 1 } \Gamma ( \nu + 3/2) } | ||
− | + | \frac{( z ^ {2} - 1) ^ {\mu /2 } }{z ^ {\mu + \nu + 1 } } | |
+ | \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | {} _ {2} F _ {1} \left ( | ||
+ | \frac{\mu + \nu + 1 }{2} | ||
+ | , | ||
+ | \frac{\mu + | ||
+ | \nu + 2 }{2} | ||
+ | ; \nu + | ||
+ | \frac{3}{2} | ||
+ | ; | ||
+ | \frac{1}{z ^ {2} } | ||
+ | \right ) | ||
+ | $$ | ||
− | + | $$ | |
+ | \textrm{ ( } \mathop{\rm arg} z = 0 \ | ||
+ | \textrm{ if } \mathop{\rm Im} z = 0, z > 0; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm arg} ( z ^ {2} - 1) = 0 \ | ||
+ | \textrm{ if } \mathop{\rm Im} z = 0, z > 1 \textrm{ ) }. | ||
+ | $$ | ||
− | < | + | The spherical functions $ P _ \nu ^ \mu ( z) $ |
+ | and $ Q _ \nu ^ \mu ( z) $ | ||
+ | are defined and single-valued in the domains $ | 1- z |< 2 $ | ||
+ | and $ | z | > 1 $, | ||
+ | respectively, of the complex plane cut by the real axis from $ - \infty $ | ||
+ | to $ + 1 $. | ||
− | + | If $ \mathop{\rm Im} z = 0 $, | |
+ | $ z = x $, | ||
+ | $ - 1 < x < 1 $, | ||
+ | then the following functions are usually taken as solutions: | ||
− | + | $$ | |
+ | P _ \nu ^ \mu ( z) = | ||
+ | \frac{1}{2} | ||
+ | [ e ^ {\mu \pi i/2 } P _ \nu ^ \mu | ||
+ | ( x+ i0) + e ^ {- \mu \pi i/2 } P _ \nu ^ \mu ( x- i0) ] = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac{1}{\Gamma ( 1- \mu ) } | |
+ | \left ( 1+ | ||
+ | \frac{x}{1-} | ||
+ | x \right ) ^ {\mu /2 } {} _ {2} F _ {1} \left ( - \nu , \nu + 1 ; 1- \mu ; 1- | ||
+ | \frac{x}{2} | ||
+ | \right ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | Q _ \nu ^ \mu ( z) = | ||
+ | \frac{1}{2} | ||
+ | e ^ {\mu \pi i } [ e ^ {- \mu \pi | ||
+ | i/2 } Q _ \nu ^ \mu ( x+ i0) + e ^ {\mu \pi i/2 } Q _ \nu ^ \mu ( x- i0) ] = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac \pi {2 \sin \mu \pi } | |
+ | \left [ \cos \mu \pi P _ \nu ^ \mu ( x) - | ||
+ | \frac{\Gamma | ||
+ | ( \nu + \mu + 1) }{\Gamma ( \nu - \mu + 1) } | ||
+ | P _ \nu ^ {- \mu } ( x) \right ] , | ||
+ | $$ | ||
− | where | + | where $ f( x+ i0) $ |
+ | $ ( f( x- i0)) $ | ||
+ | are the values of the function $ f( z) $ | ||
+ | on the upper (lower) boundary of the cut. | ||
− | When | + | When $ \mu = 0 $, |
+ | $ \nu = n = 0, 1 \dots $ | ||
+ | $ P _ {n} ( z) \equiv P _ {n} ^ {0} ( z) $ | ||
+ | are the [[Legendre polynomials|Legendre polynomials]]. For zonal spherical functions see [[Spherical harmonics|Spherical harmonics]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Chelsea, reprint (1955)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , ''Higher transcendental functions'' , '''2. Bessel functions, parabolic cylinder functions, orthogonal polynomials''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Chelsea, reprint (1955)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
A more common usage of the phrase "spherical function" is as follows. | A more common usage of the phrase "spherical function" is as follows. | ||
− | Let | + | Let $ G $ |
+ | be a unimodular locally compact group and $ K $ | ||
+ | a subgroup of $ G $. | ||
+ | Let $ \pi $ | ||
+ | be an irreducible unitary representation of $ G $ | ||
+ | on a Hilbert space $ {\mathcal H} $ | ||
+ | such that the $ K $- | ||
+ | fixed vectors in $ {\mathcal H} $ | ||
+ | form a one-dimensional subspace, spanned by a unit vector $ e $. | ||
+ | Then the $ K $- | ||
+ | bi-invariant function $ \phi $ | ||
+ | on $ G $ | ||
+ | defined by $ \phi ( x) = ( e, \pi ( x) e) $ | ||
+ | is called a spherical function. Sometimes $ \phi $ | ||
+ | is called a zonal spherical function, while the functions $ x \rightarrow ( v, \pi ( x) e) $( | ||
+ | $ v \in {\mathcal H} $) | ||
+ | are also called spherical functions. Some authors call $ \phi $ | ||
+ | an elementary spherical function, while all $ K $- | ||
+ | bi-invariant functions on $ G $ | ||
+ | are called spherical functions. | ||
− | The pair | + | The pair $ ( G, K) $ |
+ | is a Gel'fand pair if, for all irreducible unitary representations of $ G $, | ||
+ | the subspace of $ K $- | ||
+ | fixed vectors in the representation space has dimension $ 1 $ | ||
+ | or $ 0 $. | ||
+ | This is equivalent to the commutativity of the convolution algebra $ C _ {c} ( K \setminus G/K) $ | ||
+ | of $ K $- | ||
+ | bi-invariant continuous functions on $ G $ | ||
+ | with compact support. Now spherical functions are more generally defined as solutions $ \phi $, | ||
+ | not identically zero, of the functional equation | ||
− | + | $$ \tag{* } | |
+ | \phi ( x) \phi ( y) = \int\limits _ { K } \phi ( xky) dk,\ x, y \in G, | ||
+ | $$ | ||
− | where | + | where $ dk $ |
+ | is the normalized Haar measure on $ K $. | ||
+ | These solutions include the spherical functions associated with irreducible unitary representations. Other solutions may be associated with irreducible non-unitary representations of $ G $. | ||
+ | The characters of the comutative algebra $ C _ {c} ( K \setminus G/K) $ | ||
+ | are precisely the mappings $ f \rightarrow \int _ {G} f( x) \phi ( x) dx $, | ||
+ | where $ dx $ | ||
+ | is Haar measure on $ G $ | ||
+ | and $ \phi $ | ||
+ | is a solution of (*). | ||
− | If | + | If $ G $ |
+ | is, moreover, a connected Lie group, then $ ( G, K) $ | ||
+ | is a Gel'fand pair if and only if the algebra $ {\mathcal D} ( G/K) $ | ||
+ | of $ G $- | ||
+ | invariant differential operators on the homogeneous space $ G/K $ | ||
+ | is commutative. Then $ \phi $ | ||
+ | is a solution of (*) if and only if it is $ K $- | ||
+ | bi-invariant, $ C ^ \infty $, | ||
+ | $ \phi ( e)= 1 $, | ||
+ | and the function $ xK \rightarrow \phi ( x) $ | ||
+ | on $ G/K $ | ||
+ | is a joint eigenfunction of the elements of $ {\mathcal D} ( G/K) $. | ||
+ | In particular, if $ G $ | ||
+ | is a connected real semi-simple LIe group and $ K $ | ||
+ | is a maximal compact subgroup, then $ ( G, K) $ | ||
+ | is a Gel'fand pair, $ G/K $ | ||
+ | is a Riemannian symmetric space, and much information is available about $ {\mathcal D} ( G/K) $ | ||
+ | and the sperical functions. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Fauraut, "Analyse harmonique sur les paires de Gelfand et les espaces hyperboliques" , ''Anal. Harmonique'' , CIMPA (1982) pp. 315–446</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.M. Gel'fand, "Spherical functions on symmetric spaces" ''Transl. Amer. Math. Soc.'' , '''37''' (1964) pp. 39–44 ''Dokl. Akad. Nauk SSSR'' , '''70''' (1950) pp. 5–8</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Godement, "Introduction aux traveaux de A. Selberg" ''Sem. Bourbaki'' , '''144''' (1957)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Fauraut, "Analyse harmonique sur les paires de Gelfand et les espaces hyperboliques" , ''Anal. Harmonique'' , CIMPA (1982) pp. 315–446</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.M. Gel'fand, "Spherical functions on symmetric spaces" ''Transl. Amer. Math. Soc.'' , '''37''' (1964) pp. 39–44 ''Dokl. Akad. Nauk SSSR'' , '''70''' (1950) pp. 5–8</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R. Godement, "Introduction aux traveaux de A. Selberg" ''Sem. Bourbaki'' , '''144''' (1957)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR></table> |
Latest revision as of 08:22, 6 June 2020
solid spherical harmonics, associated Legendre functions of the first and second kinds
Two linearly independent solutions $ P _ \nu ^ \mu ( z) $ and $ Q _ \nu ^ \mu ( z) $ of the differential equation
$$ ( 1- z) ^ {2} \frac{d ^ {2} y }{dz ^ {2} } - 2z \frac{dy}{dz} + \left [ \nu ( \nu + 1) - \frac{\mu ^ {2} }{1- z ^ {2} } \right ] = 0, $$
where $ \mu $ and $ \nu $ are complex constants, which arises in the solution of a class of partial differential equations by the method of separation of variables (cf. Separation of variables, method of). The points $ z = \pm 1 , \infty $ are branching points of the solutions, in general. The spherical functions are particular cases of the hypergeometric functions (cf. Hypergeometric function):
$$ P _ \nu ^ \mu ( z) = \frac{1}{\Gamma ( 1- \mu ) } \left ( z+ \frac{1}{z-} 1 \right ) ^ {\mu /2 } {} _ {2} F _ {1} \left ( - \nu , \nu + 1; 1- \mu ; 1- \frac{z}{2} \right ) $$
$$ \left ( \mathop{\rm arg} z+ \frac{1}{z-} 1 = 0 \ \textrm{ if } \mathop{\rm Im} z = 0, z > 1 \right ) , $$
$$ Q _ \nu ^ \mu ( z) = \frac{e ^ {\mu \pi i } \sqrt \pi \Gamma ( \mu + \nu + 1) }{2 ^ {\nu + 1 } \Gamma ( \nu + 3/2) } \frac{( z ^ {2} - 1) ^ {\mu /2 } }{z ^ {\mu + \nu + 1 } } \times $$
$$ \times {} _ {2} F _ {1} \left ( \frac{\mu + \nu + 1 }{2} , \frac{\mu + \nu + 2 }{2} ; \nu + \frac{3}{2} ; \frac{1}{z ^ {2} } \right ) $$
$$ \textrm{ ( } \mathop{\rm arg} z = 0 \ \textrm{ if } \mathop{\rm Im} z = 0, z > 0; $$
$$ \mathop{\rm arg} ( z ^ {2} - 1) = 0 \ \textrm{ if } \mathop{\rm Im} z = 0, z > 1 \textrm{ ) }. $$
The spherical functions $ P _ \nu ^ \mu ( z) $ and $ Q _ \nu ^ \mu ( z) $ are defined and single-valued in the domains $ | 1- z |< 2 $ and $ | z | > 1 $, respectively, of the complex plane cut by the real axis from $ - \infty $ to $ + 1 $.
If $ \mathop{\rm Im} z = 0 $, $ z = x $, $ - 1 < x < 1 $, then the following functions are usually taken as solutions:
$$ P _ \nu ^ \mu ( z) = \frac{1}{2} [ e ^ {\mu \pi i/2 } P _ \nu ^ \mu ( x+ i0) + e ^ {- \mu \pi i/2 } P _ \nu ^ \mu ( x- i0) ] = $$
$$ = \ \frac{1}{\Gamma ( 1- \mu ) } \left ( 1+ \frac{x}{1-} x \right ) ^ {\mu /2 } {} _ {2} F _ {1} \left ( - \nu , \nu + 1 ; 1- \mu ; 1- \frac{x}{2} \right ) , $$
$$ Q _ \nu ^ \mu ( z) = \frac{1}{2} e ^ {\mu \pi i } [ e ^ {- \mu \pi i/2 } Q _ \nu ^ \mu ( x+ i0) + e ^ {\mu \pi i/2 } Q _ \nu ^ \mu ( x- i0) ] = $$
$$ = \ \frac \pi {2 \sin \mu \pi } \left [ \cos \mu \pi P _ \nu ^ \mu ( x) - \frac{\Gamma ( \nu + \mu + 1) }{\Gamma ( \nu - \mu + 1) } P _ \nu ^ {- \mu } ( x) \right ] , $$
where $ f( x+ i0) $ $ ( f( x- i0)) $ are the values of the function $ f( z) $ on the upper (lower) boundary of the cut.
When $ \mu = 0 $, $ \nu = n = 0, 1 \dots $ $ P _ {n} ( z) \equiv P _ {n} ^ {0} ( z) $ are the Legendre polynomials. For zonal spherical functions see Spherical harmonics.
References
[1] | H. Bateman (ed.) A. Erdélyi (ed.) et al. (ed.) , Higher transcendental functions , 2. Bessel functions, parabolic cylinder functions, orthogonal polynomials , McGraw-Hill (1953) |
[2] | E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German) |
[3] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 6 |
[4] | A. Krazer, W. Franz, "Transzendente Funktionen" , Akademie Verlag (1960) |
[5] | E.W. Hobson, "The theory of spherical and ellipsoidal harmonics" , Chelsea, reprint (1955) |
Comments
A more common usage of the phrase "spherical function" is as follows.
Let $ G $ be a unimodular locally compact group and $ K $ a subgroup of $ G $. Let $ \pi $ be an irreducible unitary representation of $ G $ on a Hilbert space $ {\mathcal H} $ such that the $ K $- fixed vectors in $ {\mathcal H} $ form a one-dimensional subspace, spanned by a unit vector $ e $. Then the $ K $- bi-invariant function $ \phi $ on $ G $ defined by $ \phi ( x) = ( e, \pi ( x) e) $ is called a spherical function. Sometimes $ \phi $ is called a zonal spherical function, while the functions $ x \rightarrow ( v, \pi ( x) e) $( $ v \in {\mathcal H} $) are also called spherical functions. Some authors call $ \phi $ an elementary spherical function, while all $ K $- bi-invariant functions on $ G $ are called spherical functions.
The pair $ ( G, K) $ is a Gel'fand pair if, for all irreducible unitary representations of $ G $, the subspace of $ K $- fixed vectors in the representation space has dimension $ 1 $ or $ 0 $. This is equivalent to the commutativity of the convolution algebra $ C _ {c} ( K \setminus G/K) $ of $ K $- bi-invariant continuous functions on $ G $ with compact support. Now spherical functions are more generally defined as solutions $ \phi $, not identically zero, of the functional equation
$$ \tag{* } \phi ( x) \phi ( y) = \int\limits _ { K } \phi ( xky) dk,\ x, y \in G, $$
where $ dk $ is the normalized Haar measure on $ K $. These solutions include the spherical functions associated with irreducible unitary representations. Other solutions may be associated with irreducible non-unitary representations of $ G $. The characters of the comutative algebra $ C _ {c} ( K \setminus G/K) $ are precisely the mappings $ f \rightarrow \int _ {G} f( x) \phi ( x) dx $, where $ dx $ is Haar measure on $ G $ and $ \phi $ is a solution of (*).
If $ G $ is, moreover, a connected Lie group, then $ ( G, K) $ is a Gel'fand pair if and only if the algebra $ {\mathcal D} ( G/K) $ of $ G $- invariant differential operators on the homogeneous space $ G/K $ is commutative. Then $ \phi $ is a solution of (*) if and only if it is $ K $- bi-invariant, $ C ^ \infty $, $ \phi ( e)= 1 $, and the function $ xK \rightarrow \phi ( x) $ on $ G/K $ is a joint eigenfunction of the elements of $ {\mathcal D} ( G/K) $. In particular, if $ G $ is a connected real semi-simple LIe group and $ K $ is a maximal compact subgroup, then $ ( G, K) $ is a Gel'fand pair, $ G/K $ is a Riemannian symmetric space, and much information is available about $ {\mathcal D} ( G/K) $ and the sperical functions.
References
[a1] | J. Fauraut, "Analyse harmonique sur les paires de Gelfand et les espaces hyperboliques" , Anal. Harmonique , CIMPA (1982) pp. 315–446 |
[a2] | I.M. Gel'fand, "Spherical functions on symmetric spaces" Transl. Amer. Math. Soc. , 37 (1964) pp. 39–44 Dokl. Akad. Nauk SSSR , 70 (1950) pp. 5–8 |
[a3] | R. Godement, "Introduction aux traveaux de A. Selberg" Sem. Bourbaki , 144 (1957) |
[a4] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 |
Spherical functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spherical_functions&oldid=48775