Difference between revisions of "Spherical coordinates"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | s0866601.png | ||
| + | $#A+1 = 35 n = 0 | ||
| + | $#C+1 = 35 : ~/encyclopedia/old_files/data/S086/S.0806660 Spherical coordinates | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | The numbers $ \rho , \theta , \phi $ | |
| + | which are related to the Cartesian coordinates $ x, y, z $ | ||
| + | by the formulas | ||
| + | |||
| + | $$ | ||
| + | x = \rho \cos \phi \sin \theta ,\ \ | ||
| + | y = \rho \sin \phi \sin \theta ,\ \ | ||
| + | z = \rho \cos \theta , | ||
| + | $$ | ||
| + | |||
| + | where $ 0 \leq \rho < \infty $, | ||
| + | $ 0 \leq \phi < 2 \pi $, | ||
| + | $ 0 \leq \theta \leq \pi $. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s086660a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s086660a.gif" /> | ||
| Line 9: | Line 29: | ||
Figure: s086660a | Figure: s086660a | ||
| − | The coordinate surfaces are (see Fig.): concentric spheres with centre | + | The coordinate surfaces are (see Fig.): concentric spheres with centre $ O $ |
| + | $ ( \rho = OP = \textrm{ const } ) $; | ||
| + | half-planes that pass through the axis $ Oz $ | ||
| + | $ ( \phi = \textrm{ angle } xOP ^ \prime = \textrm{ const } ) $; | ||
| + | circular cones with vertex $ O $ | ||
| + | and axis $ Oz $ | ||
| + | $ ( \theta = \textrm{ angle } zOP = \textrm{ const } ) $. | ||
| + | The system of spherical coordinates is orthogonal. | ||
The [[Lamé coefficients|Lamé coefficients]] are | The [[Lamé coefficients|Lamé coefficients]] are | ||
| − | + | $$ | |
| + | L _ \rho = 1,\ \ | ||
| + | L _ \phi = \rho \sin \theta ,\ \ | ||
| + | L _ \theta = \rho . | ||
| + | $$ | ||
The element of surface area is | The element of surface area is | ||
| − | + | $$ | |
| + | d \sigma = \ | ||
| + | \sqrt {\rho ^ {2} \sin ^ {2} \theta \ | ||
| + | ( d \rho d \phi ) ^ {2} + \rho ^ {2} ( d \rho d | ||
| + | \theta ) ^ {2} + \rho ^ {4} \sin ^ {2} \theta ( d \phi d \theta ) ^ {2} } . | ||
| + | $$ | ||
The volume element is | The volume element is | ||
| − | + | $$ | |
| + | dV = \rho ^ {2} \sin \theta d \rho d \phi d \theta . | ||
| + | $$ | ||
The basic operations of vector calculus are | The basic operations of vector calculus are | ||
| − | + | $$ | |
| + | \mathop{\rm grad} _ \rho f = \ | ||
| − | + | \frac{\partial f }{\partial \rho } | |
| + | ,\ \ | ||
| + | \mathop{\rm grad} _ \phi f = | ||
| + | \frac{1}{\rho \sin \theta } | ||
| + | |||
| + | \frac{\partial f }{ | ||
| + | \partial \phi } | ||
| + | ,\ \ | ||
| + | \mathop{\rm grad} _ \theta f = | ||
| + | \frac{1} \rho | ||
| + | |||
| + | \frac{\partial f }{\partial \theta } | ||
| + | ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm div} \mathbf a = | ||
| + | \frac{2} \rho | ||
| + | a _ \rho + | ||
| + | \frac{\partial a _ \rho }{\partial | ||
| + | \rho } | ||
| + | + | ||
| + | \frac{1}{\rho \sin \theta } | ||
| + | |||
| + | \frac{\partial a _ \phi }{\partial \phi | ||
| + | } | ||
| + | + | ||
| + | \frac{1}{\rho \mathop{\rm tan} \theta } | ||
| + | a _ \theta + | ||
| − | + | \frac{1} \rho | |
| + | |||
| + | \frac{\partial a _ \theta }{\partial \theta } | ||
| + | ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm rot} _ \rho \mathbf a = | ||
| + | \frac{1}{\rho \sin \theta } | ||
| + | |||
| + | \frac{\partial a _ \theta }{\partial \phi } | ||
| + | - | ||
| + | \frac{1} \rho | ||
| + | |||
| + | \frac{\partial a _ \phi }{ | ||
| + | \partial \theta } | ||
| + | - | ||
| + | \frac{1}{\rho \mathop{\rm tan} \theta } | ||
| + | a _ \phi ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm rot} _ \phi \mathbf a = | ||
| + | \frac{1} \rho | ||
| + | |||
| + | \frac{\partial a _ \rho }{\partial \theta | ||
| + | } | ||
| + | - | ||
| + | \frac{\partial a _ \theta }{\partial \rho } | ||
| + | - | ||
| + | \frac{a _ \theta } \rho | ||
| + | ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \mathop{\rm rot} _ \theta \mathbf a = | ||
| + | \frac{\partial a _ \phi }{\partial \rho } | ||
| + | + | ||
| + | \frac{a _ \phi } \rho | ||
| + | - | ||
| + | \frac{1}{\rho \ | ||
| + | \sin \theta } | ||
| + | |||
| + | \frac{\partial a _ \rho }{\partial \phi } | ||
| + | ; | ||
| + | $$ | ||
| − | + | $$ | |
| + | \Delta f = | ||
| + | \frac{\partial ^ {2} f }{\partial \rho ^ {2} } | ||
| + | + | ||
| + | \frac{2} \rho | ||
| + | |||
| + | \frac{\partial | ||
| + | f }{\partial \rho } | ||
| + | + | ||
| + | \frac{1}{\rho ^ {2} \sin ^ {2} \theta } | ||
| + | |||
| + | \frac{\partial | ||
| + | ^ {2} f }{\partial \phi ^ {2} } | ||
| + | + | ||
| + | \frac{1}{\rho ^ {2} } | ||
| + | |||
| + | \frac{\partial ^ {2} | ||
| + | f }{\partial \theta ^ {2} } | ||
| + | + | ||
| + | \frac{ \mathop{\rm cot} \theta }{\rho ^ {2} } | ||
| + | |||
| + | \frac{\partial f }{\partial \theta } | ||
| + | . | ||
| + | $$ | ||
| − | + | The numbers $ u , v, w $, | |
| + | called generalized spherical coordinates, are related to the Cartesian coordinates $ x, y, z $ | ||
| + | by the formulas | ||
| + | $$ | ||
| + | x = au \cos v \sin w,\ \ | ||
| + | y = bu \sin v \sin w,\ \ | ||
| + | z = cu \cos w, | ||
| + | $$ | ||
| + | where $ 0 \leq u < \infty $, | ||
| + | $ 0 \leq v < 2 \pi $, | ||
| + | $ 0 \leq w \leq \pi $, | ||
| + | $ a > b $, | ||
| + | $ b > 0 $. | ||
| + | The coordinate surface are: ellipsoids $ ( u = \textrm{ const } ) $, | ||
| + | half-planes $ ( v= \textrm{ const } ) $ | ||
| + | and elliptical cones $ ( w = \textrm{ const } ) $. | ||
====Comments==== | ====Comments==== | ||
| − | If the surface has been given by | + | If the surface has been given by $ R = R( \phi , \theta ) $, |
| + | then the element of surface area can be written as: | ||
| − | + | $$ | |
| + | dS = R \sqrt {\left \{ R ^ {2} + \left ( | ||
| + | \frac{\partial R }{\partial \theta } | ||
| + | \right ) ^ {2} \right \} \sin ^ {2} \theta + | ||
| + | \left ( | ||
| + | \frac{\partial R }{\partial \theta } | ||
| + | \right ) ^ {2} } \ | ||
| + | d \theta d \phi . | ||
| + | $$ | ||
A general method to transform vector functions when new coordinates are introduced is, e.g., given in [[#References|[a1]]]. | A general method to transform vector functions when new coordinates are introduced is, e.g., given in [[#References|[a1]]]. | ||
Latest revision as of 08:22, 6 June 2020
The numbers $ \rho , \theta , \phi $
which are related to the Cartesian coordinates $ x, y, z $
by the formulas
$$ x = \rho \cos \phi \sin \theta ,\ \ y = \rho \sin \phi \sin \theta ,\ \ z = \rho \cos \theta , $$
where $ 0 \leq \rho < \infty $, $ 0 \leq \phi < 2 \pi $, $ 0 \leq \theta \leq \pi $.
Figure: s086660a
The coordinate surfaces are (see Fig.): concentric spheres with centre $ O $ $ ( \rho = OP = \textrm{ const } ) $; half-planes that pass through the axis $ Oz $ $ ( \phi = \textrm{ angle } xOP ^ \prime = \textrm{ const } ) $; circular cones with vertex $ O $ and axis $ Oz $ $ ( \theta = \textrm{ angle } zOP = \textrm{ const } ) $. The system of spherical coordinates is orthogonal.
The Lamé coefficients are
$$ L _ \rho = 1,\ \ L _ \phi = \rho \sin \theta ,\ \ L _ \theta = \rho . $$
The element of surface area is
$$ d \sigma = \ \sqrt {\rho ^ {2} \sin ^ {2} \theta \ ( d \rho d \phi ) ^ {2} + \rho ^ {2} ( d \rho d \theta ) ^ {2} + \rho ^ {4} \sin ^ {2} \theta ( d \phi d \theta ) ^ {2} } . $$
The volume element is
$$ dV = \rho ^ {2} \sin \theta d \rho d \phi d \theta . $$
The basic operations of vector calculus are
$$ \mathop{\rm grad} _ \rho f = \ \frac{\partial f }{\partial \rho } ,\ \ \mathop{\rm grad} _ \phi f = \frac{1}{\rho \sin \theta } \frac{\partial f }{ \partial \phi } ,\ \ \mathop{\rm grad} _ \theta f = \frac{1} \rho \frac{\partial f }{\partial \theta } ; $$
$$ \mathop{\rm div} \mathbf a = \frac{2} \rho a _ \rho + \frac{\partial a _ \rho }{\partial \rho } + \frac{1}{\rho \sin \theta } \frac{\partial a _ \phi }{\partial \phi } + \frac{1}{\rho \mathop{\rm tan} \theta } a _ \theta + \frac{1} \rho \frac{\partial a _ \theta }{\partial \theta } ; $$
$$ \mathop{\rm rot} _ \rho \mathbf a = \frac{1}{\rho \sin \theta } \frac{\partial a _ \theta }{\partial \phi } - \frac{1} \rho \frac{\partial a _ \phi }{ \partial \theta } - \frac{1}{\rho \mathop{\rm tan} \theta } a _ \phi ; $$
$$ \mathop{\rm rot} _ \phi \mathbf a = \frac{1} \rho \frac{\partial a _ \rho }{\partial \theta } - \frac{\partial a _ \theta }{\partial \rho } - \frac{a _ \theta } \rho ; $$
$$ \mathop{\rm rot} _ \theta \mathbf a = \frac{\partial a _ \phi }{\partial \rho } + \frac{a _ \phi } \rho - \frac{1}{\rho \ \sin \theta } \frac{\partial a _ \rho }{\partial \phi } ; $$
$$ \Delta f = \frac{\partial ^ {2} f }{\partial \rho ^ {2} } + \frac{2} \rho \frac{\partial f }{\partial \rho } + \frac{1}{\rho ^ {2} \sin ^ {2} \theta } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } + \frac{1}{\rho ^ {2} } \frac{\partial ^ {2} f }{\partial \theta ^ {2} } + \frac{ \mathop{\rm cot} \theta }{\rho ^ {2} } \frac{\partial f }{\partial \theta } . $$
The numbers $ u , v, w $, called generalized spherical coordinates, are related to the Cartesian coordinates $ x, y, z $ by the formulas
$$ x = au \cos v \sin w,\ \ y = bu \sin v \sin w,\ \ z = cu \cos w, $$
where $ 0 \leq u < \infty $, $ 0 \leq v < 2 \pi $, $ 0 \leq w \leq \pi $, $ a > b $, $ b > 0 $. The coordinate surface are: ellipsoids $ ( u = \textrm{ const } ) $, half-planes $ ( v= \textrm{ const } ) $ and elliptical cones $ ( w = \textrm{ const } ) $.
Comments
If the surface has been given by $ R = R( \phi , \theta ) $, then the element of surface area can be written as:
$$ dS = R \sqrt {\left \{ R ^ {2} + \left ( \frac{\partial R }{\partial \theta } \right ) ^ {2} \right \} \sin ^ {2} \theta + \left ( \frac{\partial R }{\partial \theta } \right ) ^ {2} } \ d \theta d \phi . $$
A general method to transform vector functions when new coordinates are introduced is, e.g., given in [a1].
References
| [a1] | D.E. Rutherford, "Vector methods" , Oliver & Boyd (1949) |
| [a2] | M.R. Spiegel, "Vector analysis and an introduction to tensor analysis" , McGraw-Hill (1959) |
| [a3] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961) pp. 11; 258 |
Spherical coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spherical_coordinates&oldid=48774