Difference between revisions of "Spherical coordinates"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0866601.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/S086/S.0806660 Spherical coordinates | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The numbers $ \rho , \theta , \phi $ | |
+ | which are related to the Cartesian coordinates $ x, y, z $ | ||
+ | by the formulas | ||
+ | |||
+ | $$ | ||
+ | x = \rho \cos \phi \sin \theta ,\ \ | ||
+ | y = \rho \sin \phi \sin \theta ,\ \ | ||
+ | z = \rho \cos \theta , | ||
+ | $$ | ||
+ | |||
+ | where $ 0 \leq \rho < \infty $, | ||
+ | $ 0 \leq \phi < 2 \pi $, | ||
+ | $ 0 \leq \theta \leq \pi $. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s086660a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s086660a.gif" /> | ||
Line 9: | Line 29: | ||
Figure: s086660a | Figure: s086660a | ||
− | The coordinate surfaces are (see Fig.): concentric spheres with centre | + | The coordinate surfaces are (see Fig.): concentric spheres with centre $ O $ |
+ | $ ( \rho = OP = \textrm{ const } ) $; | ||
+ | half-planes that pass through the axis $ Oz $ | ||
+ | $ ( \phi = \textrm{ angle } xOP ^ \prime = \textrm{ const } ) $; | ||
+ | circular cones with vertex $ O $ | ||
+ | and axis $ Oz $ | ||
+ | $ ( \theta = \textrm{ angle } zOP = \textrm{ const } ) $. | ||
+ | The system of spherical coordinates is orthogonal. | ||
The [[Lamé coefficients|Lamé coefficients]] are | The [[Lamé coefficients|Lamé coefficients]] are | ||
− | + | $$ | |
+ | L _ \rho = 1,\ \ | ||
+ | L _ \phi = \rho \sin \theta ,\ \ | ||
+ | L _ \theta = \rho . | ||
+ | $$ | ||
The element of surface area is | The element of surface area is | ||
− | + | $$ | |
+ | d \sigma = \ | ||
+ | \sqrt {\rho ^ {2} \sin ^ {2} \theta \ | ||
+ | ( d \rho d \phi ) ^ {2} + \rho ^ {2} ( d \rho d | ||
+ | \theta ) ^ {2} + \rho ^ {4} \sin ^ {2} \theta ( d \phi d \theta ) ^ {2} } . | ||
+ | $$ | ||
The volume element is | The volume element is | ||
− | + | $$ | |
+ | dV = \rho ^ {2} \sin \theta d \rho d \phi d \theta . | ||
+ | $$ | ||
The basic operations of vector calculus are | The basic operations of vector calculus are | ||
− | + | $$ | |
+ | \mathop{\rm grad} _ \rho f = \ | ||
− | + | \frac{\partial f }{\partial \rho } | |
+ | ,\ \ | ||
+ | \mathop{\rm grad} _ \phi f = | ||
+ | \frac{1}{\rho \sin \theta } | ||
+ | |||
+ | \frac{\partial f }{ | ||
+ | \partial \phi } | ||
+ | ,\ \ | ||
+ | \mathop{\rm grad} _ \theta f = | ||
+ | \frac{1} \rho | ||
+ | |||
+ | \frac{\partial f }{\partial \theta } | ||
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm div} \mathbf a = | ||
+ | \frac{2} \rho | ||
+ | a _ \rho + | ||
+ | \frac{\partial a _ \rho }{\partial | ||
+ | \rho } | ||
+ | + | ||
+ | \frac{1}{\rho \sin \theta } | ||
+ | |||
+ | \frac{\partial a _ \phi }{\partial \phi | ||
+ | } | ||
+ | + | ||
+ | \frac{1}{\rho \mathop{\rm tan} \theta } | ||
+ | a _ \theta + | ||
− | + | \frac{1} \rho | |
+ | |||
+ | \frac{\partial a _ \theta }{\partial \theta } | ||
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm rot} _ \rho \mathbf a = | ||
+ | \frac{1}{\rho \sin \theta } | ||
+ | |||
+ | \frac{\partial a _ \theta }{\partial \phi } | ||
+ | - | ||
+ | \frac{1} \rho | ||
+ | |||
+ | \frac{\partial a _ \phi }{ | ||
+ | \partial \theta } | ||
+ | - | ||
+ | \frac{1}{\rho \mathop{\rm tan} \theta } | ||
+ | a _ \phi ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm rot} _ \phi \mathbf a = | ||
+ | \frac{1} \rho | ||
+ | |||
+ | \frac{\partial a _ \rho }{\partial \theta | ||
+ | } | ||
+ | - | ||
+ | \frac{\partial a _ \theta }{\partial \rho } | ||
+ | - | ||
+ | \frac{a _ \theta } \rho | ||
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm rot} _ \theta \mathbf a = | ||
+ | \frac{\partial a _ \phi }{\partial \rho } | ||
+ | + | ||
+ | \frac{a _ \phi } \rho | ||
+ | - | ||
+ | \frac{1}{\rho \ | ||
+ | \sin \theta } | ||
+ | |||
+ | \frac{\partial a _ \rho }{\partial \phi } | ||
+ | ; | ||
+ | $$ | ||
− | + | $$ | |
+ | \Delta f = | ||
+ | \frac{\partial ^ {2} f }{\partial \rho ^ {2} } | ||
+ | + | ||
+ | \frac{2} \rho | ||
+ | |||
+ | \frac{\partial | ||
+ | f }{\partial \rho } | ||
+ | + | ||
+ | \frac{1}{\rho ^ {2} \sin ^ {2} \theta } | ||
+ | |||
+ | \frac{\partial | ||
+ | ^ {2} f }{\partial \phi ^ {2} } | ||
+ | + | ||
+ | \frac{1}{\rho ^ {2} } | ||
+ | |||
+ | \frac{\partial ^ {2} | ||
+ | f }{\partial \theta ^ {2} } | ||
+ | + | ||
+ | \frac{ \mathop{\rm cot} \theta }{\rho ^ {2} } | ||
+ | |||
+ | \frac{\partial f }{\partial \theta } | ||
+ | . | ||
+ | $$ | ||
− | + | The numbers $ u , v, w $, | |
+ | called generalized spherical coordinates, are related to the Cartesian coordinates $ x, y, z $ | ||
+ | by the formulas | ||
+ | $$ | ||
+ | x = au \cos v \sin w,\ \ | ||
+ | y = bu \sin v \sin w,\ \ | ||
+ | z = cu \cos w, | ||
+ | $$ | ||
+ | where $ 0 \leq u < \infty $, | ||
+ | $ 0 \leq v < 2 \pi $, | ||
+ | $ 0 \leq w \leq \pi $, | ||
+ | $ a > b $, | ||
+ | $ b > 0 $. | ||
+ | The coordinate surface are: ellipsoids $ ( u = \textrm{ const } ) $, | ||
+ | half-planes $ ( v= \textrm{ const } ) $ | ||
+ | and elliptical cones $ ( w = \textrm{ const } ) $. | ||
====Comments==== | ====Comments==== | ||
− | If the surface has been given by | + | If the surface has been given by $ R = R( \phi , \theta ) $, |
+ | then the element of surface area can be written as: | ||
− | + | $$ | |
+ | dS = R \sqrt {\left \{ R ^ {2} + \left ( | ||
+ | \frac{\partial R }{\partial \theta } | ||
+ | \right ) ^ {2} \right \} \sin ^ {2} \theta + | ||
+ | \left ( | ||
+ | \frac{\partial R }{\partial \theta } | ||
+ | \right ) ^ {2} } \ | ||
+ | d \theta d \phi . | ||
+ | $$ | ||
A general method to transform vector functions when new coordinates are introduced is, e.g., given in [[#References|[a1]]]. | A general method to transform vector functions when new coordinates are introduced is, e.g., given in [[#References|[a1]]]. |
Latest revision as of 08:22, 6 June 2020
The numbers $ \rho , \theta , \phi $
which are related to the Cartesian coordinates $ x, y, z $
by the formulas
$$ x = \rho \cos \phi \sin \theta ,\ \ y = \rho \sin \phi \sin \theta ,\ \ z = \rho \cos \theta , $$
where $ 0 \leq \rho < \infty $, $ 0 \leq \phi < 2 \pi $, $ 0 \leq \theta \leq \pi $.
Figure: s086660a
The coordinate surfaces are (see Fig.): concentric spheres with centre $ O $ $ ( \rho = OP = \textrm{ const } ) $; half-planes that pass through the axis $ Oz $ $ ( \phi = \textrm{ angle } xOP ^ \prime = \textrm{ const } ) $; circular cones with vertex $ O $ and axis $ Oz $ $ ( \theta = \textrm{ angle } zOP = \textrm{ const } ) $. The system of spherical coordinates is orthogonal.
The Lamé coefficients are
$$ L _ \rho = 1,\ \ L _ \phi = \rho \sin \theta ,\ \ L _ \theta = \rho . $$
The element of surface area is
$$ d \sigma = \ \sqrt {\rho ^ {2} \sin ^ {2} \theta \ ( d \rho d \phi ) ^ {2} + \rho ^ {2} ( d \rho d \theta ) ^ {2} + \rho ^ {4} \sin ^ {2} \theta ( d \phi d \theta ) ^ {2} } . $$
The volume element is
$$ dV = \rho ^ {2} \sin \theta d \rho d \phi d \theta . $$
The basic operations of vector calculus are
$$ \mathop{\rm grad} _ \rho f = \ \frac{\partial f }{\partial \rho } ,\ \ \mathop{\rm grad} _ \phi f = \frac{1}{\rho \sin \theta } \frac{\partial f }{ \partial \phi } ,\ \ \mathop{\rm grad} _ \theta f = \frac{1} \rho \frac{\partial f }{\partial \theta } ; $$
$$ \mathop{\rm div} \mathbf a = \frac{2} \rho a _ \rho + \frac{\partial a _ \rho }{\partial \rho } + \frac{1}{\rho \sin \theta } \frac{\partial a _ \phi }{\partial \phi } + \frac{1}{\rho \mathop{\rm tan} \theta } a _ \theta + \frac{1} \rho \frac{\partial a _ \theta }{\partial \theta } ; $$
$$ \mathop{\rm rot} _ \rho \mathbf a = \frac{1}{\rho \sin \theta } \frac{\partial a _ \theta }{\partial \phi } - \frac{1} \rho \frac{\partial a _ \phi }{ \partial \theta } - \frac{1}{\rho \mathop{\rm tan} \theta } a _ \phi ; $$
$$ \mathop{\rm rot} _ \phi \mathbf a = \frac{1} \rho \frac{\partial a _ \rho }{\partial \theta } - \frac{\partial a _ \theta }{\partial \rho } - \frac{a _ \theta } \rho ; $$
$$ \mathop{\rm rot} _ \theta \mathbf a = \frac{\partial a _ \phi }{\partial \rho } + \frac{a _ \phi } \rho - \frac{1}{\rho \ \sin \theta } \frac{\partial a _ \rho }{\partial \phi } ; $$
$$ \Delta f = \frac{\partial ^ {2} f }{\partial \rho ^ {2} } + \frac{2} \rho \frac{\partial f }{\partial \rho } + \frac{1}{\rho ^ {2} \sin ^ {2} \theta } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } + \frac{1}{\rho ^ {2} } \frac{\partial ^ {2} f }{\partial \theta ^ {2} } + \frac{ \mathop{\rm cot} \theta }{\rho ^ {2} } \frac{\partial f }{\partial \theta } . $$
The numbers $ u , v, w $, called generalized spherical coordinates, are related to the Cartesian coordinates $ x, y, z $ by the formulas
$$ x = au \cos v \sin w,\ \ y = bu \sin v \sin w,\ \ z = cu \cos w, $$
where $ 0 \leq u < \infty $, $ 0 \leq v < 2 \pi $, $ 0 \leq w \leq \pi $, $ a > b $, $ b > 0 $. The coordinate surface are: ellipsoids $ ( u = \textrm{ const } ) $, half-planes $ ( v= \textrm{ const } ) $ and elliptical cones $ ( w = \textrm{ const } ) $.
Comments
If the surface has been given by $ R = R( \phi , \theta ) $, then the element of surface area can be written as:
$$ dS = R \sqrt {\left \{ R ^ {2} + \left ( \frac{\partial R }{\partial \theta } \right ) ^ {2} \right \} \sin ^ {2} \theta + \left ( \frac{\partial R }{\partial \theta } \right ) ^ {2} } \ d \theta d \phi . $$
A general method to transform vector functions when new coordinates are introduced is, e.g., given in [a1].
References
[a1] | D.E. Rutherford, "Vector methods" , Oliver & Boyd (1949) |
[a2] | M.R. Spiegel, "Vector analysis and an introduction to tensor analysis" , McGraw-Hill (1959) |
[a3] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961) pp. 11; 258 |
Spherical coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spherical_coordinates&oldid=48774