Namespaces
Variants
Actions

Difference between revisions of "Signature"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The signature of an algebraic system is the collection of relations and operations on the basic set of the given algebraic system together with an indication of their arity. An algebraic system (a [[Universal algebra|universal algebra]]) with signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850601.png" /> is also called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850603.png" />-system (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850605.png" />-algebra).
+
<!--
 +
s0850601.png
 +
$#A+1 = 59 n = 0
 +
$#C+1 = 59 : ~/encyclopedia/old_files/data/S085/S.0805060 Signature
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The signature of a quadratic, or symmetric bilinear, form over an ordered field is a pair of non-negative integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850606.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850607.png" /> is the positive and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850608.png" /> the negative index of inertia of the given form (see [[Law of inertia|Law of inertia]]; [[Quadratic form|Quadratic form]]). Sometimes the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s0850609.png" /> is called the signature of the form.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The signature of an algebraic system is the collection of relations and operations on the basic set of the given algebraic system together with an indication of their arity. An algebraic system (a [[Universal algebra|universal algebra]]) with signature  $  \Omega $
 +
is also called an  $  \Omega $-
 +
system (respectively,  $  \Omega $-
 +
algebra).
 +
 
 +
The signature of a quadratic, or symmetric bilinear, form over an ordered field is a pair of non-negative integers $  ( p, q) $,  
 +
where $  p $
 +
is the positive and $  q $
 +
the negative index of inertia of the given form (see [[Law of inertia|Law of inertia]]; [[Quadratic form|Quadratic form]]). Sometimes the number $  p - q $
 +
is called the signature of the form.
  
 
''O.A. Ivanova''
 
''O.A. Ivanova''
  
The signature of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506010.png" /> is the signature of the quadratic form
+
The signature of a manifold $  M  ^ {n} $
 +
is the signature of the quadratic form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506011.png" /></td> </tr></table>
+
$$
 +
Q _ {M} ( x)  = \
 +
( x \cup x, O),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506012.png" /> is the cohomology cup-product and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506013.png" /> is the [[Fundamental class|fundamental class]]. The manifold is assumed to be compact, orientable and of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506014.png" />. The signature is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506015.png" />.
+
where $  \cup $
 +
is the cohomology cup-product and $  O \in H _ {n} ( M;  Z) $
 +
is the [[Fundamental class|fundamental class]]. The manifold is assumed to be compact, orientable and of dimension $  n = 4m $.  
 +
The signature is denoted by $  \sigma ( M) $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506016.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506017.png" />, one sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506018.png" />. The signature has the following properties:
+
If $  n \not\equiv 0 $
 +
$  \mathop{\rm mod}  4 $,  
 +
one sets $  \sigma ( M) = 0 $.  
 +
The signature has the following properties:
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506019.png" />;
+
a) $  \sigma ( M + M  ^  \prime  ) = \sigma ( M) + \sigma ( M  ^  \prime  ) $;
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506020.png" />;
+
b) $  \sigma ( M \times M  ^  \prime  ) = \sigma ( M) \sigma ( M  ^  \prime  ) $;
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506021.png" />.
+
c) $  \sigma ( \partial  M) = 0 $.
  
 
The signature of a manifold can be represented as a linear function of its Pontryagin numbers (cf. [[Pontryagin number|Pontryagin number]]; [[#References|[2]]]). For the representation of the signature as the index of a differential operator see [[Index formulas|Index formulas]].
 
The signature of a manifold can be represented as a linear function of its Pontryagin numbers (cf. [[Pontryagin number|Pontryagin number]]; [[#References|[2]]]). For the representation of the signature as the index of a differential operator see [[Index formulas|Index formulas]].
Line 27: Line 56:
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506022.png" /> be a commutative graded algebra over a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506023.png" /> with unit. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506024.png" /> denote the group of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506026.png" />, under the obvious multiplication of such expressions:
+
Let $  A = \oplus _ {n=} 0 ^  \infty  A  ^ {n} $
 +
be a commutative graded algebra over a commutative ring $  R $
 +
with unit. Let $  \Lambda ( A) $
 +
denote the group of all elements $  1 + a _ {1} + a _ {2} + \dots $,  
 +
$  a _ {i} \in A  ^ {i} $,  
 +
under the obvious multiplication of such expressions:
 +
 
 +
$$
 +
( 1+ a _ {1} + a _ {2} + \dots )( 1+ b _ {1} + b _ {2} + \dots ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506027.png" /></td> </tr></table>
+
$$
 +
= \
 +
1 + ( a _ {1} + b _ {1} ) + ( a _ {2} + a _ {1} b _ {1} + b _ {2} ) + \dots .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506028.png" /></td> </tr></table>
+
A sequence  $  \{ K _ {n} \} $
 +
of polynomials  $  K _ {1} ( x _ {1} ) $,
 +
$  K _ {2} ( x _ {1} , x _ {2} ) \dots $
 +
with coefficients in  $  R $
 +
is called a multiplicative sequence of polynomials if each  $  K _ {i} $
 +
is homogeneous of degree  $  i $
 +
and if for each  $  A $
 +
the mapping  $  K : ( 1+ a _ {1} + a _ {2} + \dots ) \mapsto ( 1+ K _ {1} ( a _ {2} ) + K _ {2} ( a _ {1} , a _ {2} ) + \dots ) $
 +
defines a group homomorphism from  $  \Lambda ( A) $
 +
to  $  \Lambda ( A) $.
 +
Given a power series  $  f( t) \in R [[ t]] $
 +
with constant term  $  1 $,
 +
there is precisely one multiplicative sequence  $  \{ K _ {n} \} $
 +
over  $  R $
 +
such that  $  K( 1+ t) = f ( t) $.  
 +
This multiplicative sequence is called the multiplicative sequence defined by the power series  $  f( t) $.
  
A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506029.png" /> of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506031.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506032.png" /> is called a multiplicative sequence of polynomials if each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506033.png" /> is homogeneous of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506034.png" /> and if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506035.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506036.png" /> defines a group homomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506037.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506038.png" />. Given a power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506039.png" /> with constant term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506040.png" />, there is precisely one multiplicative sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506041.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506042.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506043.png" />. This multiplicative sequence is called the multiplicative sequence defined by the power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506044.png" />.
+
Now, let  $  \{ L _ {n} \} $
 +
be the multiplicative sequence defined by the power series
  
Now, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506045.png" /> be the multiplicative sequence defined by the power series
+
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506046.png" /></td> </tr></table>
+
\frac{\sqrt t }{ \mathop{\rm tanh} ( \sqrt t ) }
 +
=
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506047.png" /></td> </tr></table>
+
$$
 +
= \
 +
1 +
 +
\frac{1}{3}
 +
t -
 +
\frac{1}{45}
 +
t  ^ {2} + \dots + (- 1)
 +
^ {k-} 1 2 ^ {2  ^ {k} } B _ {k}
 +
\frac{t  ^ {k} }{(}
 +
2k)! + \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506048.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506049.png" />-th Bernoulli number (cf. [[Bernoulli numbers|Bernoulli numbers]]). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506051.png" />-genus of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506052.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506053.png" /> is defined by
+
where $  B _ {k} $
 +
is the $  k $-
 +
th Bernoulli number (cf. [[Bernoulli numbers|Bernoulli numbers]]). The $  L $-
 +
genus of a manifold $  M $
 +
of dimension $  4m $
 +
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506054.png" /></td> </tr></table>
+
$$
 +
L ( M  ^ {4m} )  = \langle  L _ {m} ( p _ {1} \dots p _ {m} ) , [ M] \rangle ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506055.png" /> is the fundamental homology class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506057.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506058.png" />-th [[Pontryagin class|Pontryagin class]]. One sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506059.png" /> if the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506060.png" /> is not a multiple of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506061.png" />. The Hirzebruch signature theorem now says that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085060/s08506062.png" />-genus of a manifold is equal to its signature [[#References|[2]]], §19.
+
where $  [ M] $
 +
is the fundamental homology class of $  M $
 +
and $  p _ {i} $
 +
is the $  i $-
 +
th [[Pontryagin class|Pontryagin class]]. One sets $  L( M) = 0 $
 +
if the dimension of $  M $
 +
is not a multiple of $  4 $.  
 +
The Hirzebruch signature theorem now says that the $  L $-
 +
genus of a manifold is equal to its signature [[#References|[2]]], §19.
  
 
In some of the older literature the signature of a manifold is referred to as the index of a manifold.
 
In some of the older literature the signature of a manifold is referred to as the index of a manifold.

Revision as of 08:13, 6 June 2020


The signature of an algebraic system is the collection of relations and operations on the basic set of the given algebraic system together with an indication of their arity. An algebraic system (a universal algebra) with signature $ \Omega $ is also called an $ \Omega $- system (respectively, $ \Omega $- algebra).

The signature of a quadratic, or symmetric bilinear, form over an ordered field is a pair of non-negative integers $ ( p, q) $, where $ p $ is the positive and $ q $ the negative index of inertia of the given form (see Law of inertia; Quadratic form). Sometimes the number $ p - q $ is called the signature of the form.

O.A. Ivanova

The signature of a manifold $ M ^ {n} $ is the signature of the quadratic form

$$ Q _ {M} ( x) = \ ( x \cup x, O), $$

where $ \cup $ is the cohomology cup-product and $ O \in H _ {n} ( M; Z) $ is the fundamental class. The manifold is assumed to be compact, orientable and of dimension $ n = 4m $. The signature is denoted by $ \sigma ( M) $.

If $ n \not\equiv 0 $ $ \mathop{\rm mod} 4 $, one sets $ \sigma ( M) = 0 $. The signature has the following properties:

a) $ \sigma ( M + M ^ \prime ) = \sigma ( M) + \sigma ( M ^ \prime ) $;

b) $ \sigma ( M \times M ^ \prime ) = \sigma ( M) \sigma ( M ^ \prime ) $;

c) $ \sigma ( \partial M) = 0 $.

The signature of a manifold can be represented as a linear function of its Pontryagin numbers (cf. Pontryagin number; [2]). For the representation of the signature as the index of a differential operator see Index formulas.

References

[1] A. Dold, "Lectures on algebraic topology" , Springer (1980)
[2] J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)

M.I. Voitsekhovskii

Comments

Let $ A = \oplus _ {n=} 0 ^ \infty A ^ {n} $ be a commutative graded algebra over a commutative ring $ R $ with unit. Let $ \Lambda ( A) $ denote the group of all elements $ 1 + a _ {1} + a _ {2} + \dots $, $ a _ {i} \in A ^ {i} $, under the obvious multiplication of such expressions:

$$ ( 1+ a _ {1} + a _ {2} + \dots )( 1+ b _ {1} + b _ {2} + \dots ) = $$

$$ = \ 1 + ( a _ {1} + b _ {1} ) + ( a _ {2} + a _ {1} b _ {1} + b _ {2} ) + \dots . $$

A sequence $ \{ K _ {n} \} $ of polynomials $ K _ {1} ( x _ {1} ) $, $ K _ {2} ( x _ {1} , x _ {2} ) \dots $ with coefficients in $ R $ is called a multiplicative sequence of polynomials if each $ K _ {i} $ is homogeneous of degree $ i $ and if for each $ A $ the mapping $ K : ( 1+ a _ {1} + a _ {2} + \dots ) \mapsto ( 1+ K _ {1} ( a _ {2} ) + K _ {2} ( a _ {1} , a _ {2} ) + \dots ) $ defines a group homomorphism from $ \Lambda ( A) $ to $ \Lambda ( A) $. Given a power series $ f( t) \in R [[ t]] $ with constant term $ 1 $, there is precisely one multiplicative sequence $ \{ K _ {n} \} $ over $ R $ such that $ K( 1+ t) = f ( t) $. This multiplicative sequence is called the multiplicative sequence defined by the power series $ f( t) $.

Now, let $ \{ L _ {n} \} $ be the multiplicative sequence defined by the power series

$$ \frac{\sqrt t }{ \mathop{\rm tanh} ( \sqrt t ) } = $$

$$ = \ 1 + \frac{1}{3} t - \frac{1}{45} t ^ {2} + \dots + (- 1) ^ {k-} 1 2 ^ {2 ^ {k} } B _ {k} \frac{t ^ {k} }{(} 2k)! + \dots , $$

where $ B _ {k} $ is the $ k $- th Bernoulli number (cf. Bernoulli numbers). The $ L $- genus of a manifold $ M $ of dimension $ 4m $ is defined by

$$ L ( M ^ {4m} ) = \langle L _ {m} ( p _ {1} \dots p _ {m} ) , [ M] \rangle , $$

where $ [ M] $ is the fundamental homology class of $ M $ and $ p _ {i} $ is the $ i $- th Pontryagin class. One sets $ L( M) = 0 $ if the dimension of $ M $ is not a multiple of $ 4 $. The Hirzebruch signature theorem now says that the $ L $- genus of a manifold is equal to its signature [2], §19.

In some of the older literature the signature of a manifold is referred to as the index of a manifold.

How to Cite This Entry:
Signature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Signature&oldid=48695
This article was adapted from an original article by O.A. Ivanova, M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article