Namespaces
Variants
Actions

Difference between revisions of "Serre subcategory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A locally small [[Full subcategory|full subcategory]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847001.png" /> of an [[Abelian category|Abelian category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847002.png" /> such that for every [[Exact sequence|exact sequence]]
+
<!--
 +
s0847001.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/S084/S.0804700 Serre subcategory
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847003.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847004.png" /> it is the case that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847005.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847006.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847007.png" />. In this context, local smallness of a category is the condition: A collection of representatives of the isomorphism classes of subobjects of any object forms a set. Serre subcategories can be characterized as kernels of functors defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847008.png" />.
+
A locally small [[Full subcategory|full subcategory]]  $  \mathfrak S $
 +
of an [[Abelian category|Abelian category]]  $  \mathfrak A $
 +
such that for every [[Exact sequence|exact sequence]]
  
Given a Serre subcategory, one can define the quotient category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s0847009.png" />, whose objects are the objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s08470010.png" /> and whose morphisms are defined by
+
$$
 +
0 \rightarrow  A  \rightarrow  B  \rightarrow  C  \rightarrow  0
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s08470011.png" /></td> </tr></table>
+
in  $  \mathfrak A $
 +
it is the case that  $  B \in \mathfrak S $
 +
if and only if  $  A \in \mathfrak S $
 +
and  $  C \in \mathfrak S $.
 +
In this context, local smallness of a category is the condition: A collection of representatives of the isomorphism classes of subobjects of any object forms a set. Serre subcategories can be characterized as kernels of functors defined on  $  \mathfrak A $.
  
The quotient category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s08470012.png" /> is Abelian.
+
Given a Serre subcategory, one can define the quotient category $  \mathfrak A / \mathfrak S $,
 +
whose objects are the objects of  $  \mathfrak A $
 +
and whose morphisms are defined by
  
A Serre subcategory is called localizing if the canonical functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s08470013.png" /> has a right adjoint <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s08470014.png" />, called the section functor. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084700/s08470015.png" /> is a [[Grothendieck category|Grothendieck category]] with coproducts, then a Serre subcategory is localizing if and only if it is closed under coproducts. Thus one obtains a generalization of the classical theory of localization of modules over a commutative ring. This method embraces many constructions of rings of fractions and torsion theories (radicals) of modules over associative rings.
+
$$
 +
\mathop{\rm Mor} _ {\mathfrak A / \mathfrak S }  ( X, Y)  = \
 +
\lim\limits _ { {Y  ^  \prime  , X/X  ^  \prime  \in \mathfrak S } vec } \
 +
\mathop{\rm Mor} _ {\mathfrak A }
 +
( X  ^  \prime  , Y/Y  ^  \prime  ) .
 +
$$
 +
 
 +
The quotient category  $  \mathfrak A / \mathfrak S $
 +
is Abelian.
 +
 
 +
A Serre subcategory is called localizing if the canonical functor $  T: \mathfrak A \rightarrow \mathfrak A / \mathfrak S $
 +
has a right adjoint $  S: \mathfrak A / \mathfrak S \rightarrow \mathfrak A $,  
 +
called the section functor. If $  \mathfrak A $
 +
is a [[Grothendieck category|Grothendieck category]] with coproducts, then a Serre subcategory is localizing if and only if it is closed under coproducts. Thus one obtains a generalization of the classical theory of localization of modules over a commutative ring. This method embraces many constructions of rings of fractions and torsion theories (radicals) of modules over associative rings.
  
 
The concept of a Serre subcategory was introduced by J.-P. Serre [[#References|[1]]], who called them classes. By using this concept he obtained a far-reaching generalization of a theorem of Hurewicz (see [[Homotopy group|Homotopy group]]).
 
The concept of a Serre subcategory was introduced by J.-P. Serre [[#References|[1]]], who called them classes. By using this concept he obtained a far-reaching generalization of a theorem of Hurewicz (see [[Homotopy group|Homotopy group]]).
Line 17: Line 48:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.-.P. Serre,  "Groupes d'homotopie et classes de groupes abéliens"  ''Ann. of Math.'' , '''58''' :  2  (1953)  pp. 258–294</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N. Popesco,  P. Gabriel,  "Caractérisations des catégories abéliennes avec générateurs et limites inductives exactes"  ''C.R. Acad. Sci. Paris'' , '''258''' :  17  (1964)  pp. 4188–4190</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.-.P. Serre,  "Groupes d'homotopie et classes de groupes abéliens"  ''Ann. of Math.'' , '''58''' :  2  (1953)  pp. 258–294</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N. Popesco,  P. Gabriel,  "Caractérisations des catégories abéliennes avec générateurs et limites inductives exactes"  ''C.R. Acad. Sci. Paris'' , '''258''' :  17  (1964)  pp. 4188–4190</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 08:13, 6 June 2020


A locally small full subcategory $ \mathfrak S $ of an Abelian category $ \mathfrak A $ such that for every exact sequence

$$ 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 $$

in $ \mathfrak A $ it is the case that $ B \in \mathfrak S $ if and only if $ A \in \mathfrak S $ and $ C \in \mathfrak S $. In this context, local smallness of a category is the condition: A collection of representatives of the isomorphism classes of subobjects of any object forms a set. Serre subcategories can be characterized as kernels of functors defined on $ \mathfrak A $.

Given a Serre subcategory, one can define the quotient category $ \mathfrak A / \mathfrak S $, whose objects are the objects of $ \mathfrak A $ and whose morphisms are defined by

$$ \mathop{\rm Mor} _ {\mathfrak A / \mathfrak S } ( X, Y) = \ \lim\limits _ { {Y ^ \prime , X/X ^ \prime \in \mathfrak S } vec } \ \mathop{\rm Mor} _ {\mathfrak A } ( X ^ \prime , Y/Y ^ \prime ) . $$

The quotient category $ \mathfrak A / \mathfrak S $ is Abelian.

A Serre subcategory is called localizing if the canonical functor $ T: \mathfrak A \rightarrow \mathfrak A / \mathfrak S $ has a right adjoint $ S: \mathfrak A / \mathfrak S \rightarrow \mathfrak A $, called the section functor. If $ \mathfrak A $ is a Grothendieck category with coproducts, then a Serre subcategory is localizing if and only if it is closed under coproducts. Thus one obtains a generalization of the classical theory of localization of modules over a commutative ring. This method embraces many constructions of rings of fractions and torsion theories (radicals) of modules over associative rings.

The concept of a Serre subcategory was introduced by J.-P. Serre [1], who called them classes. By using this concept he obtained a far-reaching generalization of a theorem of Hurewicz (see Homotopy group).

References

[1] J.-.P. Serre, "Groupes d'homotopie et classes de groupes abéliens" Ann. of Math. , 58 : 2 (1953) pp. 258–294
[2] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[3] N. Popesco, P. Gabriel, "Caractérisations des catégories abéliennes avec générateurs et limites inductives exactes" C.R. Acad. Sci. Paris , 258 : 17 (1964) pp. 4188–4190

Comments

Serre subcategories are also called thick subcategories or dense subcategories. See also Localization in categories.

References

[a1] N. Popescu, "Abelian categories with applications to rings and modules" , Acad. Press (1973)
How to Cite This Entry:
Serre subcategory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Serre_subcategory&oldid=48679
This article was adapted from an original article by V.E. Govorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article