Difference between revisions of "Schur multiplicator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0834601.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/S083/S.0803460 Schur multiplicator, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''Schur multiplier, of a group $ G $'' | |
− | where | + | The [[Cohomology group|cohomology group]] $ H ^ {2} ( G, \mathbf C ^ \star ) $, |
+ | where $ \mathbf C ^ \star $ | ||
+ | is the multiplicative group of complex numbers with trivial $ G $- | ||
+ | action. The Schur multiplicator was introduced by I. Schur [[#References|[1]]] in his work on finite-dimensional complex projective representations of a group (cf. [[Projective representation|Projective representation]]). If $ \rho : G \rightarrow \mathop{\rm PGL} ( n) $ | ||
+ | is such a representation, then $ \rho $ | ||
+ | can be interpreted as a mapping $ \pi : G \rightarrow \mathop{\rm GL} ( n) $ | ||
+ | such that | ||
− | + | $$ | |
+ | \pi ( \sigma ) \pi ( \tau ) = a _ {\sigma , \tau } \pi ( \sigma , \tau ), | ||
+ | $$ | ||
− | + | where $ a _ {\sigma , \tau } $ | |
+ | is a $ 2 $- | ||
+ | cocycle with values in $ \mathbf C ^ \star $. | ||
+ | In particular, the projective representation $ \rho $ | ||
+ | is the projectivization of a [[Linear representation|linear representation]] $ \pi $ | ||
+ | if and only if the cocycle $ a _ {\sigma , \tau } $ | ||
+ | determines the trivial element of the group $ H ^ {2} ( G, \mathbf C ^ \star ) $. | ||
+ | If $ H ^ {2} ( G, \mathbf C ^ \star ) = 0 $, | ||
+ | then $ G $ | ||
+ | is called a closed group in the sense of Schur. If $ G $ | ||
+ | is a finite group, then there exist natural isomorphisms | ||
− | + | $$ | |
+ | H ^ {2} ( G, \mathbf C ^ \star ) \cong H ^ {2} ( G, \mathbf Q / \mathbf Z ) \cong \ | ||
+ | H ^ {3} ( G, \mathbf Z ). | ||
+ | $$ | ||
− | of a finite group | + | Let $ M( G) = H ^ {-} 3 ( G, \mathbf Z ) = \mathop{\rm Char} ( H ^ {3} ( G, \mathbf Z )) $. |
+ | If a central extension | ||
+ | |||
+ | $$ \tag{* } | ||
+ | 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 | ||
+ | $$ | ||
+ | |||
+ | of a finite group $ G $ | ||
+ | is given, then there is a natural mapping $ \phi : M( G) \rightarrow A $ | ||
+ | whose image coincides with $ A \cap [ F, F ] $. | ||
+ | This mapping $ \phi $ | ||
+ | coincides with the mapping $ H ^ {-} 3 ( G, \mathbf Z ) \rightarrow H ^ {-} 1 ( G, A) $ | ||
+ | induced by the cup-product with the element of $ H ^ {2} ( G, A) $ | ||
+ | defined by the extension (*). Conversely, for any subgroup $ C \subset M( G) $ | ||
+ | there is an extension (*) such that $ \mathop{\rm Ker} \phi = C $. | ||
+ | If $ G = [ G, G] $, | ||
+ | then the extension (*) is uniquely determined by the homomorphism $ \phi $. | ||
+ | If $ \phi $ | ||
+ | is a monomorphism, then any projective representation of $ G $ | ||
+ | is induced by some linear representation of $ F $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen" ''J. Reine Angew. Math.'' , '''127''' (1904) pp. 20–50</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1975)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Schur, "Ueber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen" ''J. Reine Angew. Math.'' , '''127''' (1904) pp. 20–50</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1975)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Gruenberg, "Cohomological topics in group theory" , ''Lect. notes in math.'' , '''143''' , Springer (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Methods of representation theory" , '''I''' , Wiley (Interscience) (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Gruenberg, "Cohomological topics in group theory" , ''Lect. notes in math.'' , '''143''' , Springer (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Methods of representation theory" , '''I''' , Wiley (Interscience) (1981)</TD></TR></table> |
Latest revision as of 08:12, 6 June 2020
Schur multiplier, of a group $ G $
The cohomology group $ H ^ {2} ( G, \mathbf C ^ \star ) $, where $ \mathbf C ^ \star $ is the multiplicative group of complex numbers with trivial $ G $- action. The Schur multiplicator was introduced by I. Schur [1] in his work on finite-dimensional complex projective representations of a group (cf. Projective representation). If $ \rho : G \rightarrow \mathop{\rm PGL} ( n) $ is such a representation, then $ \rho $ can be interpreted as a mapping $ \pi : G \rightarrow \mathop{\rm GL} ( n) $ such that
$$ \pi ( \sigma ) \pi ( \tau ) = a _ {\sigma , \tau } \pi ( \sigma , \tau ), $$
where $ a _ {\sigma , \tau } $ is a $ 2 $- cocycle with values in $ \mathbf C ^ \star $. In particular, the projective representation $ \rho $ is the projectivization of a linear representation $ \pi $ if and only if the cocycle $ a _ {\sigma , \tau } $ determines the trivial element of the group $ H ^ {2} ( G, \mathbf C ^ \star ) $. If $ H ^ {2} ( G, \mathbf C ^ \star ) = 0 $, then $ G $ is called a closed group in the sense of Schur. If $ G $ is a finite group, then there exist natural isomorphisms
$$ H ^ {2} ( G, \mathbf C ^ \star ) \cong H ^ {2} ( G, \mathbf Q / \mathbf Z ) \cong \ H ^ {3} ( G, \mathbf Z ). $$
Let $ M( G) = H ^ {-} 3 ( G, \mathbf Z ) = \mathop{\rm Char} ( H ^ {3} ( G, \mathbf Z )) $. If a central extension
$$ \tag{* } 1 \rightarrow A \rightarrow F \rightarrow G \rightarrow 1 $$
of a finite group $ G $ is given, then there is a natural mapping $ \phi : M( G) \rightarrow A $ whose image coincides with $ A \cap [ F, F ] $. This mapping $ \phi $ coincides with the mapping $ H ^ {-} 3 ( G, \mathbf Z ) \rightarrow H ^ {-} 1 ( G, A) $ induced by the cup-product with the element of $ H ^ {2} ( G, A) $ defined by the extension (*). Conversely, for any subgroup $ C \subset M( G) $ there is an extension (*) such that $ \mathop{\rm Ker} \phi = C $. If $ G = [ G, G] $, then the extension (*) is uniquely determined by the homomorphism $ \phi $. If $ \phi $ is a monomorphism, then any projective representation of $ G $ is induced by some linear representation of $ F $.
References
[1] | I. Schur, "Ueber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen" J. Reine Angew. Math. , 127 (1904) pp. 20–50 |
[2] | S. MacLane, "Homology" , Springer (1975) |
Comments
References
[a1] | G. Gruenberg, "Cohomological topics in group theory" , Lect. notes in math. , 143 , Springer (1970) |
[a2] | C.W. Curtis, I. Reiner, "Methods of representation theory" , I , Wiley (Interscience) (1981) |
Schur multiplicator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_multiplicator&oldid=48625