|
|
Line 1: |
Line 1: |
− | The Schur index of a central simple algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834401.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834402.png" /> (cf. [[Central simple algebra|Central simple algebra]]) is the degree of the division algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834403.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834404.png" /> is a full matrix algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834405.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834406.png" />.
| + | <!-- |
| + | s0834401.png |
| + | $#A+1 = 53 n = 2 |
| + | $#C+1 = 53 : ~/encyclopedia/old_files/data/S083/S.0803440 Schur index |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834407.png" /> be a [[Finite group|finite group]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834408.png" /> a [[Field|field]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s0834409.png" /> the [[Algebraic closure|algebraic closure]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344010.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344011.png" /> be an irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344012.png" />-module with character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344013.png" /> (cf. [[Irreducible module|Irreducible module]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344014.png" /> be obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344015.png" /> by adjoining the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344017.png" />. The Schur index of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344019.png" />, (or the Schur index of the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344020.png" />) is the minimal degree of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344021.png" /> extending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344022.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344023.png" /> descends to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344024.png" />, i.e. such that there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344025.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344026.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344027.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | For a finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344028.png" /> the Schur index is always <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344029.png" />, [[#References|[a1]]].
| + | The Schur index of a central simple algebra $ A $ |
| + | over a field $ K $( |
| + | cf. [[Central simple algebra|Central simple algebra]]) is the degree of the division algebra $ D $ |
| + | such that $ A $ |
| + | is a full matrix algebra $ M _ {n} ( D) $ |
| + | over $ D $. |
| | | |
− | A basic result on the Schur index is that for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344030.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344031.png" /> the multiplicity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344032.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344033.png" /> is a multiple of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344034.png" />.
| + | Let $ G $ |
| + | be a [[Finite group|finite group]], $ K $ |
| + | a [[Field|field]] and $ \overline{K}\; $ |
| + | the [[Algebraic closure|algebraic closure]] of $ K $. |
| + | Let $ V $ |
| + | be an irreducible $ \overline{K}\; [ G] $- |
| + | module with character $ \rho $( |
| + | cf. [[Irreducible module|Irreducible module]]). Let $ K( \rho ) $ |
| + | be obtained from $ K $ |
| + | by adjoining the values $ \rho ( g) $, |
| + | $ g \in G $. |
| + | The Schur index of the module $ V $, |
| + | $ m _ {K} ( V) $, |
| + | (or the Schur index of the character $ \rho $) |
| + | is the minimal degree of a field $ S $ |
| + | extending $ K( \rho ) $ |
| + | such that $ V $ |
| + | descends to $ S $, |
| + | i.e. such that there is an $ S[ G] $- |
| + | module $ W $ |
| + | for which $ V \simeq \overline{K}\; \otimes _ {S} W $. |
| | | |
− | A field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344035.png" /> is a splitting field for a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344036.png" /> if each irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344037.png" />-module is absolutely irreducible, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344038.png" /> is irreducible. The basic result on the Schur index quoted above readily leads to a proof of R. Brauer's result [[#References|[a1]]] that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344039.png" /> is the exponent of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344040.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344041.png" /> is the smallest integer such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344042.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344043.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344044.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344045.png" />.
| + | For a finite field $ K $ |
| + | the Schur index is always $ 1 $, |
| + | [[#References|[a1]]]. |
| | | |
− | The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344046.png" /> of classes of central simple algebras over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344047.png" /> which occur as components of a group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344048.png" /> for some finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344049.png" /> is a subgroup of the [[Brauer group|Brauer group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344050.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344051.png" />, and is known as the Schur subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344052.png" />. Cf. [[#References|[a4]]] for results on the structure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344053.png" />. | + | A basic result on the Schur index is that for each $ K[ G] $- |
| + | module $ W $ |
| + | the multiplicity of $ V $ |
| + | in $ \overline{K}\; \otimes _ {K} W $ |
| + | is a multiple of $ m _ {K} ( V) $. |
| + | |
| + | A field $ S \subset \overline{K}\; $ |
| + | is a splitting field for a finite group $ G $ |
| + | if each irreducible $ S[ G] $- |
| + | module is absolutely irreducible, i.e. if $ \overline{K}\; \otimes _ {S} V $ |
| + | is irreducible. The basic result on the Schur index quoted above readily leads to a proof of R. Brauer's result [[#References|[a1]]] that if $ d $ |
| + | is the exponent of a finite group $ G $( |
| + | i.e. $ d $ |
| + | is the smallest integer such that $ g ^ {d} = e $ |
| + | for all $ g \in G $), |
| + | then $ \mathbf Q ( 1 ^ {1/d} ) $ |
| + | is a splitting field for $ G $. |
| + | |
| + | The set $ S( K) $ |
| + | of classes of central simple algebras over $ K $ |
| + | which occur as components of a group algebra $ K[ G] $ |
| + | for some finite group $ G $ |
| + | is a subgroup of the [[Brauer group|Brauer group]] $ \mathop{\rm Br} ( K) $ |
| + | of $ K $, |
| + | and is known as the Schur subgroup of $ \mathop{\rm Br} ( K) $. |
| + | Cf. [[#References|[a4]]] for results on the structure of $ S( K) $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Brauer, "On the representation of a group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344054.png" /> in the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344055.png" />-th roots of unity" ''Amer. J. Math.'' , '''67''' (1945) pp. 461–471</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §90, §41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''2''' , Springer (1982) pp. §1</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> T. Yamada, "The Schur subgroup of the Brauer group" , Springer (1974)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Brauer, "On the representation of a group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344054.png" /> in the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344055.png" />-th roots of unity" ''Amer. J. Math.'' , '''67''' (1945) pp. 461–471</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §90, §41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''2''' , Springer (1982) pp. §1</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> T. Yamada, "The Schur subgroup of the Brauer group" , Springer (1974)</TD></TR></table> |
The Schur index of a central simple algebra $ A $
over a field $ K $(
cf. Central simple algebra) is the degree of the division algebra $ D $
such that $ A $
is a full matrix algebra $ M _ {n} ( D) $
over $ D $.
Let $ G $
be a finite group, $ K $
a field and $ \overline{K}\; $
the algebraic closure of $ K $.
Let $ V $
be an irreducible $ \overline{K}\; [ G] $-
module with character $ \rho $(
cf. Irreducible module). Let $ K( \rho ) $
be obtained from $ K $
by adjoining the values $ \rho ( g) $,
$ g \in G $.
The Schur index of the module $ V $,
$ m _ {K} ( V) $,
(or the Schur index of the character $ \rho $)
is the minimal degree of a field $ S $
extending $ K( \rho ) $
such that $ V $
descends to $ S $,
i.e. such that there is an $ S[ G] $-
module $ W $
for which $ V \simeq \overline{K}\; \otimes _ {S} W $.
For a finite field $ K $
the Schur index is always $ 1 $,
[a1].
A basic result on the Schur index is that for each $ K[ G] $-
module $ W $
the multiplicity of $ V $
in $ \overline{K}\; \otimes _ {K} W $
is a multiple of $ m _ {K} ( V) $.
A field $ S \subset \overline{K}\; $
is a splitting field for a finite group $ G $
if each irreducible $ S[ G] $-
module is absolutely irreducible, i.e. if $ \overline{K}\; \otimes _ {S} V $
is irreducible. The basic result on the Schur index quoted above readily leads to a proof of R. Brauer's result [a1] that if $ d $
is the exponent of a finite group $ G $(
i.e. $ d $
is the smallest integer such that $ g ^ {d} = e $
for all $ g \in G $),
then $ \mathbf Q ( 1 ^ {1/d} ) $
is a splitting field for $ G $.
The set $ S( K) $
of classes of central simple algebras over $ K $
which occur as components of a group algebra $ K[ G] $
for some finite group $ G $
is a subgroup of the Brauer group $ \mathop{\rm Br} ( K) $
of $ K $,
and is known as the Schur subgroup of $ \mathop{\rm Br} ( K) $.
Cf. [a4] for results on the structure of $ S( K) $.
References
[a1] | R. Brauer, "On the representation of a group of order in the field of -th roots of unity" Amer. J. Math. , 67 (1945) pp. 461–471 |
[a2] | C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §90, §41 |
[a3] | B. Huppert, "Finite groups" , 2 , Springer (1982) pp. §1 |
[a4] | T. Yamada, "The Schur subgroup of the Brauer group" , Springer (1974) |