Difference between revisions of "Scalar curvature"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0832501.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/S083/S.0803250 Scalar curvature | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a Riemannian manifold at a point $ p $'' | |
− | + | The trace of the [[Ricci tensor|Ricci tensor]] with respect to the metric tensor $ g $. | |
+ | The scalar curvature $ s ( p) $ | ||
+ | is connected with the [[Ricci curvature|Ricci curvature]] $ r $ | ||
+ | and the [[Sectional curvature|sectional curvature]] $ k $ | ||
+ | by the formulas | ||
− | + | $$ | |
+ | s ( p) = \ | ||
+ | \sum _ {i = 1 } ^ { n } r ( e _ {i} ) = \ | ||
+ | \sum _ {i, j = 1 } ^ { n } k ( e _ {i} , e _ {j} ), | ||
+ | $$ | ||
− | where | + | where $ e _ {1} \dots e _ {n} $ |
+ | is an orthonormal basis of the tangent space. In the equivalent Einstein notation, these equations have the form | ||
+ | |||
+ | $$ | ||
+ | s ( p) = g ^ {ij} R _ {ij} = \ | ||
+ | g ^ {ij} g ^ {kl} R _ {kijl} , | ||
+ | $$ | ||
+ | |||
+ | where $ R _ {ij} $ | ||
+ | and $ R _ {kijl} $ | ||
+ | are the components of the Ricci tensor and the curvature tensor, respectively, and the $ g ^ {ij} $ | ||
+ | are the contravariant components of the metric tensor. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1–2''' , Interscience (1963–1969)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , '''1–2''' , Interscience (1963–1969)</TD></TR></table> |
Latest revision as of 08:12, 6 June 2020
of a Riemannian manifold at a point $ p $
The trace of the Ricci tensor with respect to the metric tensor $ g $. The scalar curvature $ s ( p) $ is connected with the Ricci curvature $ r $ and the sectional curvature $ k $ by the formulas
$$ s ( p) = \ \sum _ {i = 1 } ^ { n } r ( e _ {i} ) = \ \sum _ {i, j = 1 } ^ { n } k ( e _ {i} , e _ {j} ), $$
where $ e _ {1} \dots e _ {n} $ is an orthonormal basis of the tangent space. In the equivalent Einstein notation, these equations have the form
$$ s ( p) = g ^ {ij} R _ {ij} = \ g ^ {ij} g ^ {kl} R _ {kijl} , $$
where $ R _ {ij} $ and $ R _ {kijl} $ are the components of the Ricci tensor and the curvature tensor, respectively, and the $ g ^ {ij} $ are the contravariant components of the metric tensor.
References
[1] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
[2] | P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
Comments
References
[a1] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1–2 , Interscience (1963–1969) |
Scalar curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Scalar_curvature&oldid=48614