Difference between revisions of "Saddle point method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | s0830701.png | ||
| + | $#A+1 = 47 n = 0 | ||
| + | $#C+1 = 47 : ~/encyclopedia/old_files/data/S083/S.0803070 Saddle point method | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
A method for computing the asymptotic expansion of integrals of the form | A method for computing the asymptotic expansion of integrals of the form | ||
| − | + | $$ \tag{* } | |
| + | F( \lambda ) = \int\limits _ \gamma f( z) e ^ {\lambda S( z) } dz, | ||
| + | $$ | ||
| − | where | + | where $ \lambda > 0 $, |
| + | $ \lambda \rightarrow + \infty $ | ||
| + | is a large parameter, $ \gamma $ | ||
| + | is a contour in the complex $ z $- | ||
| + | plane, and the functions $ f( z) $ | ||
| + | and $ S( z) $ | ||
| + | are holomorphic in a domain $ D $ | ||
| + | containing $ \gamma $. | ||
| + | The zeros of $ S ^ \prime ( z) $ | ||
| + | are called the saddle points of $ S( z) $. | ||
| + | The essence of the method is as follows. The contour $ \gamma $ | ||
| + | is deformed to a contour $ \widetilde \gamma $ | ||
| + | with the same end-points and lying in $ D $ | ||
| + | and such that $ \max _ {z \in \widetilde \gamma } \mathop{\rm Re} S( z) $ | ||
| + | is attained only at the saddle points or at the ends of $ \widetilde \gamma $( | ||
| + | the contour of steepest descent). The asymptotics of the integral (*) along the path of steepest descent are calculated by means of the [[Laplace method|Laplace method]] and are equal to the sum of the contributions from the saddle points. The contribution $ V _ {z _ {0} } ( \lambda ) $ | ||
| + | from the point $ z _ {0} $ | ||
| + | is an integral of the form of (*) taken over a small arc of $ \widetilde \gamma $ | ||
| + | containing the point $ z _ {0} $. | ||
| + | If $ z _ {0} $ | ||
| + | is an interior point of $ \widetilde \gamma $ | ||
| + | and $ z _ {0} $ | ||
| + | is a saddle point with $ S ^ {\prime\prime} ( z _ {0} ) \neq 0 $, | ||
| + | then | ||
| − | + | $$ | |
| + | V _ {z _ {0} } ( \lambda ) = \sqrt {- | ||
| + | \frac{2 \pi }{\lambda S ^ {\prime\prime} | ||
| + | ( z _ {0} ) } | ||
| + | } e ^ {\lambda S( z _ {0} ) } [ f( z _ {0} ) + O( \lambda ^ {-} 1 )]. | ||
| + | $$ | ||
The contour of steepest descent has a minimax property; on it, | The contour of steepest descent has a minimax property; on it, | ||
| − | + | $$ | |
| + | \min _ {\gamma ^ \prime } \max _ {z \in \gamma ^ \prime } \mathop{\rm Re} | ||
| + | S( z) | ||
| + | $$ | ||
| − | is attained, where the minimum is taken over all contours | + | is attained, where the minimum is taken over all contours $ \gamma ^ \prime $ |
| + | lying in $ D $ | ||
| + | having the same end-points as $ \gamma $. | ||
| + | The main difficulty in using the method is to select the saddle points, i.e. to choose the $ \widetilde \gamma $ | ||
| + | corresponding to $ \gamma $. | ||
The method is due to P. Debye [[#References|[1]]], although the ideas in the method were suggested earlier by B. Riemann [[#References|[2]]]. See [[#References|[3]]]–[[#References|[9]]] for the calculation of the contributions from the saddle points and from the end-points of the contour. | The method is due to P. Debye [[#References|[1]]], although the ideas in the method were suggested earlier by B. Riemann [[#References|[2]]]. See [[#References|[3]]]–[[#References|[9]]] for the calculation of the contributions from the saddle points and from the end-points of the contour. | ||
| Line 17: | Line 66: | ||
The method is in essence the only method for calculating the asymptotic expansions of integrals of the form (*). It can be used to derive the asymptotic expansions for Laplace, Fourier and Mellin transforms, as well as for transforms of exponentials of polynomials and many special functions. | The method is in essence the only method for calculating the asymptotic expansions of integrals of the form (*). It can be used to derive the asymptotic expansions for Laplace, Fourier and Mellin transforms, as well as for transforms of exponentials of polynomials and many special functions. | ||
| − | Let | + | Let $ z \in \mathbf C ^ {n} $, |
| + | let $ \gamma $ | ||
| + | be a bounded manifold with boundary of dimension $ n $ | ||
| + | and of class $ C ^ \infty $, | ||
| + | let functions $ f( z) $ | ||
| + | and $ S( z) $ | ||
| + | be holomorphic in a certain domain $ D $ | ||
| + | containing $ \gamma $, | ||
| + | and let $ dz = dz _ {1} \dots dz _ {n} $. | ||
| + | Suppose that $ \max _ {z \in \gamma } \mathop{\rm Re} S( z) $ | ||
| + | is attained at a single point $ z ^ {0} $ | ||
| + | which is an interior point for $ \gamma $ | ||
| + | and a non-singular saddle point for $ S( z) $, | ||
| + | i.e. $ \Delta _ {S} ( z ^ {0} ) \equiv \mathop{\rm det} S ^ {\prime\prime} ( z ^ {0} ) \neq 0 $. | ||
| + | Then the contribution from $ z ^ {0} $ | ||
| + | is | ||
| − | + | $$ | |
| + | F( \lambda ) = \left ( | ||
| + | \frac{2 \pi } \lambda | ||
| + | \right ) ^ {n/2} (- \Delta _ {S} ( z | ||
| + | ^ {0} )) ^ {-} 1/2 e ^ {\lambda S( z ^ {0} ) } [ f( z ^ {0} ) + O( | ||
| + | \lambda ^ {-} 1 )]. | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Debye, "Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments und unbeschränkt veranderliche Werte des Index" ''Math. Ann.'' , '''67''' (1909) pp. 535–558</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B. Riemann, "Mathematische Werke" , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E.Ya. Riekstyn'sh, "Asymptotic expansions of integrals" , '''1–2''' , Riga (1974–1977) (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> M.V. Fedoryuk, "The saddle-point method" , Moscow (1977) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Debye, "Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments und unbeschränkt veranderliche Werte des Index" ''Math. Ann.'' , '''67''' (1909) pp. 535–558</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B. Riemann, "Mathematische Werke" , Dover, reprint (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E.Ya. Riekstyn'sh, "Asymptotic expansions of integrals" , '''1–2''' , Riga (1974–1977) (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> M.V. Fedoryuk, "The saddle-point method" , Moscow (1977) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Wong, "Asymptotic approximations of integrals" , Acad. Press (1989)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Wong, "Asymptotic approximations of integrals" , Acad. Press (1989)</TD></TR></table> | ||
Latest revision as of 08:12, 6 June 2020
A method for computing the asymptotic expansion of integrals of the form
$$ \tag{* } F( \lambda ) = \int\limits _ \gamma f( z) e ^ {\lambda S( z) } dz, $$
where $ \lambda > 0 $, $ \lambda \rightarrow + \infty $ is a large parameter, $ \gamma $ is a contour in the complex $ z $- plane, and the functions $ f( z) $ and $ S( z) $ are holomorphic in a domain $ D $ containing $ \gamma $. The zeros of $ S ^ \prime ( z) $ are called the saddle points of $ S( z) $. The essence of the method is as follows. The contour $ \gamma $ is deformed to a contour $ \widetilde \gamma $ with the same end-points and lying in $ D $ and such that $ \max _ {z \in \widetilde \gamma } \mathop{\rm Re} S( z) $ is attained only at the saddle points or at the ends of $ \widetilde \gamma $( the contour of steepest descent). The asymptotics of the integral (*) along the path of steepest descent are calculated by means of the Laplace method and are equal to the sum of the contributions from the saddle points. The contribution $ V _ {z _ {0} } ( \lambda ) $ from the point $ z _ {0} $ is an integral of the form of (*) taken over a small arc of $ \widetilde \gamma $ containing the point $ z _ {0} $. If $ z _ {0} $ is an interior point of $ \widetilde \gamma $ and $ z _ {0} $ is a saddle point with $ S ^ {\prime\prime} ( z _ {0} ) \neq 0 $, then
$$ V _ {z _ {0} } ( \lambda ) = \sqrt {- \frac{2 \pi }{\lambda S ^ {\prime\prime} ( z _ {0} ) } } e ^ {\lambda S( z _ {0} ) } [ f( z _ {0} ) + O( \lambda ^ {-} 1 )]. $$
The contour of steepest descent has a minimax property; on it,
$$ \min _ {\gamma ^ \prime } \max _ {z \in \gamma ^ \prime } \mathop{\rm Re} S( z) $$
is attained, where the minimum is taken over all contours $ \gamma ^ \prime $ lying in $ D $ having the same end-points as $ \gamma $. The main difficulty in using the method is to select the saddle points, i.e. to choose the $ \widetilde \gamma $ corresponding to $ \gamma $.
The method is due to P. Debye [1], although the ideas in the method were suggested earlier by B. Riemann [2]. See [3]–[9] for the calculation of the contributions from the saddle points and from the end-points of the contour.
The method is in essence the only method for calculating the asymptotic expansions of integrals of the form (*). It can be used to derive the asymptotic expansions for Laplace, Fourier and Mellin transforms, as well as for transforms of exponentials of polynomials and many special functions.
Let $ z \in \mathbf C ^ {n} $, let $ \gamma $ be a bounded manifold with boundary of dimension $ n $ and of class $ C ^ \infty $, let functions $ f( z) $ and $ S( z) $ be holomorphic in a certain domain $ D $ containing $ \gamma $, and let $ dz = dz _ {1} \dots dz _ {n} $. Suppose that $ \max _ {z \in \gamma } \mathop{\rm Re} S( z) $ is attained at a single point $ z ^ {0} $ which is an interior point for $ \gamma $ and a non-singular saddle point for $ S( z) $, i.e. $ \Delta _ {S} ( z ^ {0} ) \equiv \mathop{\rm det} S ^ {\prime\prime} ( z ^ {0} ) \neq 0 $. Then the contribution from $ z ^ {0} $ is
$$ F( \lambda ) = \left ( \frac{2 \pi } \lambda \right ) ^ {n/2} (- \Delta _ {S} ( z ^ {0} )) ^ {-} 1/2 e ^ {\lambda S( z ^ {0} ) } [ f( z ^ {0} ) + O( \lambda ^ {-} 1 )]. $$
References
| [1] | P. Debye, "Näherungsformeln für die Zylinderfunktionen für grosse Werte des Arguments und unbeschränkt veranderliche Werte des Index" Math. Ann. , 67 (1909) pp. 535–558 |
| [2] | B. Riemann, "Mathematische Werke" , Dover, reprint (1953) |
| [3] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) |
| [4] | N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981) |
| [5] | M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1962) (Translated from Russian) |
| [6] | E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965) |
| [7] | F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) |
| [8] | E.Ya. Riekstyn'sh, "Asymptotic expansions of integrals" , 1–2 , Riga (1974–1977) (In Russian) |
| [9] | M.V. Fedoryuk, "The saddle-point method" , Moscow (1977) (In Russian) |
Comments
References
| [a1] | R. Wong, "Asymptotic approximations of integrals" , Acad. Press (1989) |
Saddle point method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Saddle_point_method&oldid=48605