Difference between revisions of "Ricci identity"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0817901.png | ||
+ | $#A+1 = 28 n = 0 | ||
+ | $#C+1 = 28 : ~/encyclopedia/old_files/data/R081/R.0801790 Ricci identity | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An identity expressing one of the properties of the [[Riemann tensor|Riemann tensor]] $ R _ {ij,k} ^ {l} $( | |
+ | or $ R _ {ij,kl} $): | ||
− | + | $$ | |
+ | R _ {ij,k} ^ {l} + | ||
+ | R _ {jk,i} ^ {l} + | ||
+ | R _ {ki,j} ^ {l} = 0 . | ||
+ | $$ | ||
+ | |||
+ | For a covariant tensor $ R _ {ij,kl} $ | ||
+ | the identity is of the form | ||
+ | |||
+ | $$ | ||
+ | R _ {ij,kl} + | ||
+ | R _ {jk,il} + | ||
+ | R _ {ki,jl} = 0 , | ||
+ | $$ | ||
i.e. cycling over the three first indices yields zero. | i.e. cycling over the three first indices yields zero. | ||
− | An identity which should be satisfied by the covariant derivatives of second order with respect to the metric tensor | + | An identity which should be satisfied by the covariant derivatives of second order with respect to the metric tensor $ g _ {ij} $ |
+ | of a Riemannian space $ V _ {n} $, | ||
+ | which differ only by the order of differentiation. If $ \lambda _ {i} $ | ||
+ | is a tensor of valency 1 and $ \lambda _ {i,jk} $ | ||
+ | is the covariant derivative of second order with respect to $ x ^ {j} $ | ||
+ | and $ x ^ {k} $ | ||
+ | relative to the tensor $ g _ {ij} $, | ||
+ | then the Ricci identity takes the form | ||
− | + | $$ | |
+ | \lambda _ {i,jk} - \lambda _ {i,kj} = \lambda _ {l} R _ {ij,k} ^ {l} , | ||
+ | $$ | ||
− | where | + | where $ R _ {ij,k} ^ {l} $ |
+ | is the Riemann [[Curvature tensor|curvature tensor]] determined by the [[Metric tensor|metric tensor]] $ g _ {ij} $ | ||
+ | of the space $ V _ {n} $( | ||
+ | in other words, an alternating second absolute derivative of the tensor field $ \lambda _ {i} $ | ||
+ | in the metric $ g _ {ij} $ | ||
+ | is expressed in terms of the Riemann tensor and the components of $ \lambda _ {i} $). | ||
− | For a covariant tensor | + | For a covariant tensor $ a _ {ij} $ |
+ | of valency 2 the Ricci identity has the form | ||
− | + | $$ | |
+ | a _ {ij,kl} - | ||
+ | a _ {ij,lk} = \ | ||
+ | a _ {ih} R _ {jk,l} ^ {h} + a _ {h j } R _ {ik,l} ^ {h} . | ||
+ | $$ | ||
− | In general, for a covariant tensor | + | In general, for a covariant tensor $ a _ {r _ {1} \dots r _ {m} } $ |
+ | of valency $ m $ | ||
+ | the identity has the form | ||
− | + | $$ | |
+ | a _ {r _ {1} \dots r _ {m} , k l } - | ||
+ | a _ {r _ {1} \dots r _ {m} , l k } = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sum _ \alpha ^ { {1 } \dots m } a _ {r _ {1} \dots | ||
+ | r _ {\alpha - 1 } h r _ {\alpha + 1 } \dots | ||
+ | r _ {m} } R _ {r _ \alpha k l } ^ {h} . | ||
+ | $$ | ||
− | Similar identities can be written for contravariant and mixed tensors in | + | Similar identities can be written for contravariant and mixed tensors in $ V _ {n} $. |
+ | The Ricci identity is used, e.g., in constructions of the geometry of subspaces in $ V _ {n} $ | ||
+ | as an integrability condition for the principal variational equations from which Gauss' equations and the [[Peterson–Codazzi equations|Peterson–Codazzi equations]] for subspaces of $ V _ {n} $ | ||
+ | are derived. | ||
The identity was established by G. Ricci (see [[#References|[1]]]). | The identity was established by G. Ricci (see [[#References|[1]]]). | ||
Line 31: | Line 85: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Ricci, T. Levi-Civita, "Méthodes de calcul différentiel absolu et leurs applications" ''Math. Ann.'' , '''54''' (1901) pp. 125–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Ricci, T. Levi-Civita, "Méthodes de calcul différentiel absolu et leurs applications" ''Math. Ann.'' , '''54''' (1901) pp. 125–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:11, 6 June 2020
An identity expressing one of the properties of the Riemann tensor $ R _ {ij,k} ^ {l} $(
or $ R _ {ij,kl} $):
$$ R _ {ij,k} ^ {l} + R _ {jk,i} ^ {l} + R _ {ki,j} ^ {l} = 0 . $$
For a covariant tensor $ R _ {ij,kl} $ the identity is of the form
$$ R _ {ij,kl} + R _ {jk,il} + R _ {ki,jl} = 0 , $$
i.e. cycling over the three first indices yields zero.
An identity which should be satisfied by the covariant derivatives of second order with respect to the metric tensor $ g _ {ij} $ of a Riemannian space $ V _ {n} $, which differ only by the order of differentiation. If $ \lambda _ {i} $ is a tensor of valency 1 and $ \lambda _ {i,jk} $ is the covariant derivative of second order with respect to $ x ^ {j} $ and $ x ^ {k} $ relative to the tensor $ g _ {ij} $, then the Ricci identity takes the form
$$ \lambda _ {i,jk} - \lambda _ {i,kj} = \lambda _ {l} R _ {ij,k} ^ {l} , $$
where $ R _ {ij,k} ^ {l} $ is the Riemann curvature tensor determined by the metric tensor $ g _ {ij} $ of the space $ V _ {n} $( in other words, an alternating second absolute derivative of the tensor field $ \lambda _ {i} $ in the metric $ g _ {ij} $ is expressed in terms of the Riemann tensor and the components of $ \lambda _ {i} $).
For a covariant tensor $ a _ {ij} $ of valency 2 the Ricci identity has the form
$$ a _ {ij,kl} - a _ {ij,lk} = \ a _ {ih} R _ {jk,l} ^ {h} + a _ {h j } R _ {ik,l} ^ {h} . $$
In general, for a covariant tensor $ a _ {r _ {1} \dots r _ {m} } $ of valency $ m $ the identity has the form
$$ a _ {r _ {1} \dots r _ {m} , k l } - a _ {r _ {1} \dots r _ {m} , l k } = $$
$$ = \ \sum _ \alpha ^ { {1 } \dots m } a _ {r _ {1} \dots r _ {\alpha - 1 } h r _ {\alpha + 1 } \dots r _ {m} } R _ {r _ \alpha k l } ^ {h} . $$
Similar identities can be written for contravariant and mixed tensors in $ V _ {n} $. The Ricci identity is used, e.g., in constructions of the geometry of subspaces in $ V _ {n} $ as an integrability condition for the principal variational equations from which Gauss' equations and the Peterson–Codazzi equations for subspaces of $ V _ {n} $ are derived.
The identity was established by G. Ricci (see [1]).
References
[1] | G. Ricci, T. Levi-Civita, "Méthodes de calcul différentiel absolu et leurs applications" Math. Ann. , 54 (1901) pp. 125–201 |
[2] | P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
[3] | L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949) |
Comments
The first Ricci identity is usually called the first Bianchi identity in the West, cf. also Bianchi identity.
References
[a1] | W. Klingenberg, "Riemannian geometry" , de Gruyter (1982) (Translated from German) |
[a2] | N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965) |
[a3] | S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Interscience (1963) |
Ricci identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ricci_identity&oldid=48537