Difference between revisions of "Polar coordinates"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0734101.png | ||
| + | $#A+1 = 40 n = 0 | ||
| + | $#C+1 = 40 : ~/encyclopedia/old_files/data/P073/P.0703410 Polar coordinates | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | The numbers $ \rho $ | |
| + | and $ \phi $( | ||
| + | see ) related to rectangular Cartesian coordinates $ x $ | ||
| + | and $ y $ | ||
| + | by the formulas: | ||
| + | |||
| + | $$ | ||
| + | x = \rho \cos \phi ,\ \ | ||
| + | y = \rho \sin \phi , | ||
| + | $$ | ||
| + | |||
| + | where $ 0 \leq \rho < \infty $, | ||
| + | $ 0 \leq \phi < 2 \pi $. | ||
| + | The coordinate lines are: concentric circles ( $ \rho = \textrm{ const } $) | ||
| + | and rays ( $ \phi = \textrm{ const } $). | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p073410a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p073410a.gif" /> | ||
| Line 9: | Line 31: | ||
Figure: p073410a | Figure: p073410a | ||
| − | The system of polar coordinates is an [[Orthogonal system|orthogonal system]]. To each point in the | + | The system of polar coordinates is an [[Orthogonal system|orthogonal system]]. To each point in the $ Oxy $- |
| + | plane (except the point $ O $ | ||
| + | for which $ \rho = 0 $ | ||
| + | and $ \phi $ | ||
| + | is undefined, i.e. can be any number $ 0 \leq \phi < 2 \pi $) | ||
| + | corresponds a pair of numbers $ ( \rho , \phi ) $ | ||
| + | and vice versa. The distance $ \rho $ | ||
| + | between a point $ P $ | ||
| + | and $ ( 0 , 0 ) $( | ||
| + | the pole) is called the polar radius, and the angle $ \phi $ | ||
| + | is called the polar angle. The [[Lamé coefficients|Lamé coefficients]] (scale factors) are: | ||
| − | + | $$ | |
| + | L _ \rho = 1 ,\ L _ \phi = \rho . | ||
| + | $$ | ||
The surface element is: | The surface element is: | ||
| − | + | $$ | |
| + | d \sigma = \rho d \rho d \phi . | ||
| + | $$ | ||
The fundamental operations of vector analysis are: | The fundamental operations of vector analysis are: | ||
| − | + | $$ | |
| + | \mathop{\rm grad} _ \rho f = | ||
| + | \frac{\partial f }{\partial \rho } | ||
| + | ,\ \ | ||
| + | \mathop{\rm grad} _ \phi f = | ||
| + | \frac{1} \rho | ||
| + | |||
| + | \frac{\partial f }{\partial \phi } | ||
| + | ; | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | \mathop{\rm div} \mathbf a = | ||
| + | \frac{1} \rho | ||
| + | a _ \rho + | ||
| + | \frac{\partial a _ \rho }{\partial \rho } | ||
| + | + | ||
| + | \frac{1} \rho | ||
| + | |||
| + | \frac{\partial a _ \phi }{\partial | ||
| + | \phi } | ||
| + | ,\ \mathbf a = ( a _ \rho , a _ \phi ) ; | ||
| + | $$ | ||
| + | |||
| + | $$ | ||
| + | \Delta f = | ||
| + | \frac{1} \rho | ||
| + | |||
| + | \frac \partial {\partial \rho } | ||
| + | \left ( | ||
| + | \rho | ||
| + | \frac{\partial f }{\partial \rho } | ||
| + | \right ) + | ||
| + | \frac{1}{\rho ^ {2} } | ||
| + | |||
| + | \frac{ | ||
| + | \partial ^ {2} f }{\partial \phi ^ {2} } | ||
| + | = | ||
| + | \frac{\partial | ||
| + | ^ {2} f }{\partial \rho ^ {2} } | ||
| + | + | ||
| + | \frac{1} \rho | ||
| − | + | \frac{\partial f }{\partial \rho } | |
| + | + | ||
| + | \frac{1}{\rho ^ {2} } | ||
| − | + | \frac{\partial ^ {2} f }{\partial \phi ^ {2} } | |
| + | . | ||
| + | $$ | ||
| − | The numbers | + | The numbers $ r $ |
| + | and $ \psi $ | ||
| + | related to Cartesian rectangular coordinates $ x $ | ||
| + | and $ y $ | ||
| + | by the formulas: | ||
| − | + | $$ | |
| + | x = a r \cos \psi ,\ \ | ||
| + | y = b r \sin \psi , | ||
| + | $$ | ||
| − | where < | + | where $ 0 \leq r < \infty $, |
| + | $ 0 \leq \psi < 2 \pi $, | ||
| + | $ a, b > 0 $, | ||
| + | $ a \neq b $, | ||
| + | are called generalized polar coordinates. The coordinate lines are: ellipses ( $ r = \textrm{ const } $) | ||
| + | and rays ( $ \psi = \textrm{ const } $). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.A. Korn, T.M. Korn, "Mathematical handbook for scientists and engineers" , McGraw-Hill (1961)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.A. Korn, T.M. Korn, "Mathematical handbook for scientists and engineers" , McGraw-Hill (1961)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
The generalization of polar coordinates to 3 dimensions are the [[Spherical coordinates|spherical coordinates]]. | The generalization of polar coordinates to 3 dimensions are the [[Spherical coordinates|spherical coordinates]]. | ||
| − | By viewing a point | + | By viewing a point $ ( x, y) $ |
| + | as a complex number $ z = x+ iy $, | ||
| + | the polar coordinates $ ( \rho , \phi ) $ | ||
| + | correspond to the representation of $ z $ | ||
| + | as $ z = \rho e ^ {i \phi } $. | ||
See also [[Complex number|Complex number]]. | See also [[Complex number|Complex number]]. | ||
Revision as of 08:06, 6 June 2020
The numbers $ \rho $
and $ \phi $(
see ) related to rectangular Cartesian coordinates $ x $
and $ y $
by the formulas:
$$ x = \rho \cos \phi ,\ \ y = \rho \sin \phi , $$
where $ 0 \leq \rho < \infty $, $ 0 \leq \phi < 2 \pi $. The coordinate lines are: concentric circles ( $ \rho = \textrm{ const } $) and rays ( $ \phi = \textrm{ const } $).
Figure: p073410a
The system of polar coordinates is an orthogonal system. To each point in the $ Oxy $- plane (except the point $ O $ for which $ \rho = 0 $ and $ \phi $ is undefined, i.e. can be any number $ 0 \leq \phi < 2 \pi $) corresponds a pair of numbers $ ( \rho , \phi ) $ and vice versa. The distance $ \rho $ between a point $ P $ and $ ( 0 , 0 ) $( the pole) is called the polar radius, and the angle $ \phi $ is called the polar angle. The Lamé coefficients (scale factors) are:
$$ L _ \rho = 1 ,\ L _ \phi = \rho . $$
The surface element is:
$$ d \sigma = \rho d \rho d \phi . $$
The fundamental operations of vector analysis are:
$$ \mathop{\rm grad} _ \rho f = \frac{\partial f }{\partial \rho } ,\ \ \mathop{\rm grad} _ \phi f = \frac{1} \rho \frac{\partial f }{\partial \phi } ; $$
$$ \mathop{\rm div} \mathbf a = \frac{1} \rho a _ \rho + \frac{\partial a _ \rho }{\partial \rho } + \frac{1} \rho \frac{\partial a _ \phi }{\partial \phi } ,\ \mathbf a = ( a _ \rho , a _ \phi ) ; $$
$$ \Delta f = \frac{1} \rho \frac \partial {\partial \rho } \left ( \rho \frac{\partial f }{\partial \rho } \right ) + \frac{1}{\rho ^ {2} } \frac{ \partial ^ {2} f }{\partial \phi ^ {2} } = \frac{\partial ^ {2} f }{\partial \rho ^ {2} } + \frac{1} \rho \frac{\partial f }{\partial \rho } + \frac{1}{\rho ^ {2} } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } . $$
The numbers $ r $ and $ \psi $ related to Cartesian rectangular coordinates $ x $ and $ y $ by the formulas:
$$ x = a r \cos \psi ,\ \ y = b r \sin \psi , $$
where $ 0 \leq r < \infty $, $ 0 \leq \psi < 2 \pi $, $ a, b > 0 $, $ a \neq b $, are called generalized polar coordinates. The coordinate lines are: ellipses ( $ r = \textrm{ const } $) and rays ( $ \psi = \textrm{ const } $).
References
| [1] | G.A. Korn, T.M. Korn, "Mathematical handbook for scientists and engineers" , McGraw-Hill (1961) |
Comments
The generalization of polar coordinates to 3 dimensions are the spherical coordinates.
By viewing a point $ ( x, y) $ as a complex number $ z = x+ iy $, the polar coordinates $ ( \rho , \phi ) $ correspond to the representation of $ z $ as $ z = \rho e ^ {i \phi } $.
See also Complex number.
References
| [a1] | H. Triebel, "Analysis and mathematical physics" , Reidel (1986) pp. 103 |
| [a2] | K. Rektorys (ed.) , Applicable mathematics , Iliffe (1969) pp. 216 |
Polar coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polar_coordinates&oldid=48226