|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727501.png" /> with values in a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727502.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727504.png" />-valued place of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727505.png" />''
| + | <!-- |
| + | p0727501.png |
| + | $#A+1 = 37 n = 0 |
| + | $#C+1 = 37 : ~/encyclopedia/old_files/data/P072/P.0702750 Place of a field |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727506.png" /> satisfying the conditions
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727507.png" /></td> </tr></table>
| + | '' $ K $ |
| + | with values in a field $ L $, |
| + | $ L $- |
| + | valued place of a field $ K $'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727508.png" /></td> </tr></table>
| + | A mapping $ f: K \rightarrow L \cup \{ \infty \} $ |
| + | satisfying the conditions |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p0727509.png" /></td> </tr></table>
| + | $$ |
| + | f ( 1) = 1, |
| + | $$ |
| + | |
| + | $$ |
| + | f ( a + b) = f ( a) + f ( b), |
| + | $$ |
| + | |
| + | $$ |
| + | f ( ab) = f ( a) \cdot f ( b) |
| + | $$ |
| | | |
| (provided that the expressions on the right-hand sides are defined). The following conventions are made: | | (provided that the expressions on the right-hand sides are defined). The following conventions are made: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275010.png" /></td> </tr></table>
| + | $$ |
| + | \infty \cdot \infty = \infty , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275011.png" /></td> </tr></table>
| + | $$ |
| + | c + \infty = \infty + c = \infty ,\ c \in L, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275012.png" /></td> </tr></table>
| + | $$ |
| + | c \cdot \infty = \infty \cdot c = \infty ,\ c \in L,\ c \neq 0, |
| + | $$ |
| | | |
− | while the expressions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275015.png" /> are undefined. | + | while the expressions $ \infty + \infty $, |
| + | $ 0 \cdot \infty $ |
| + | and $ \infty \cdot 0 $ |
| + | are undefined. |
| | | |
− | An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275016.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275017.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275018.png" /> is called finite in the place <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275019.png" />; the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275020.png" /> of finite elements is a subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275021.png" />, and the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275022.png" /> is a ring homomorphism. The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275023.png" /> is a [[Local ring|local ring]], its maximal ideal is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275024.png" />. | + | An element $ a $ |
| + | in $ K $ |
| + | for which $ f ( a) \in L $ |
| + | is called finite in the place $ f $; |
| + | the set $ A $ |
| + | of finite elements is a subring of $ K $, |
| + | and the mapping $ f: A \rightarrow L $ |
| + | is a ring homomorphism. The ring $ A $ |
| + | is a [[Local ring|local ring]], its maximal ideal is $ \mathfrak m = \{ {a \in K } : {f ( a) = 0 } \} $. |
| | | |
− | A place <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275025.png" /> determines a [[Valuation|valuation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275027.png" /> with group of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275028.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275030.png" /> are, respectively, the groups of invertible elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275032.png" />). The ring of this valuation is the same as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275033.png" />. Conversely, any valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275034.png" /> of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275035.png" /> determines a place of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275036.png" /> with values in the residue class field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275037.png" />. Here, the ring of finite elements is the same as the ring of (integers of) the valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072750/p07275038.png" />. | + | A place $ f $ |
| + | determines a [[Valuation|valuation]] $ v $ |
| + | of $ K $ |
| + | with group of values $ K ^ {*} /A ^ {*} $( |
| + | where $ K ^ {*} = K \setminus \{ 0 \} $ |
| + | and $ A ^ {*} = A \setminus \mathfrak m $ |
| + | are, respectively, the groups of invertible elements of $ K $ |
| + | and $ A $). |
| + | The ring of this valuation is the same as $ A $. |
| + | Conversely, any valuation $ v $ |
| + | of a field $ K $ |
| + | determines a place of $ K $ |
| + | with values in the residue class field of $ v $. |
| + | Here, the ring of finite elements is the same as the ring of (integers of) the valuation $ v $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Algebra" , '''2''' , Wiley (1977) pp. Chapt. 9</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Algebra" , '''2''' , Wiley (1977) pp. Chapt. 9</TD></TR></table> |
$ K $
with values in a field $ L $,
$ L $-
valued place of a field $ K $
A mapping $ f: K \rightarrow L \cup \{ \infty \} $
satisfying the conditions
$$
f ( 1) = 1,
$$
$$
f ( a + b) = f ( a) + f ( b),
$$
$$
f ( ab) = f ( a) \cdot f ( b)
$$
(provided that the expressions on the right-hand sides are defined). The following conventions are made:
$$
\infty \cdot \infty = \infty ,
$$
$$
c + \infty = \infty + c = \infty ,\ c \in L,
$$
$$
c \cdot \infty = \infty \cdot c = \infty ,\ c \in L,\ c \neq 0,
$$
while the expressions $ \infty + \infty $,
$ 0 \cdot \infty $
and $ \infty \cdot 0 $
are undefined.
An element $ a $
in $ K $
for which $ f ( a) \in L $
is called finite in the place $ f $;
the set $ A $
of finite elements is a subring of $ K $,
and the mapping $ f: A \rightarrow L $
is a ring homomorphism. The ring $ A $
is a local ring, its maximal ideal is $ \mathfrak m = \{ {a \in K } : {f ( a) = 0 } \} $.
A place $ f $
determines a valuation $ v $
of $ K $
with group of values $ K ^ {*} /A ^ {*} $(
where $ K ^ {*} = K \setminus \{ 0 \} $
and $ A ^ {*} = A \setminus \mathfrak m $
are, respectively, the groups of invertible elements of $ K $
and $ A $).
The ring of this valuation is the same as $ A $.
Conversely, any valuation $ v $
of a field $ K $
determines a place of $ K $
with values in the residue class field of $ v $.
Here, the ring of finite elements is the same as the ring of (integers of) the valuation $ v $.
References
[1] | S. Lang, "Algebra" , Addison-Wesley (1984) |
References
[a1] | P.M. Cohn, "Algebra" , 2 , Wiley (1977) pp. Chapt. 9 |