Namespaces
Variants
Actions

Difference between revisions of "Permutation test"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A statistical test intended for testing the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723101.png" /> according to which the probability density (cf. [[Density of a probability distribution|Density of a probability distribution]]) of an observable random vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723102.png" /> belongs to the family of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723103.png" />-dimensional densities that are symmetric with respect to permutation of their arguments.
+
<!--
 +
p0723101.png
 +
$#A+1 = 50 n = 0
 +
$#C+1 = 50 : ~/encyclopedia/old_files/data/P072/P.0702310 Permutation test
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Assume that one has to test the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723104.png" /> that the probability density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723105.png" /> of the random vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723106.png" /> belongs to the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723107.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723108.png" />-dimensional densities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p0723109.png" /> that are symmetric with respect to permutation of the arguments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231010.png" />, from a realization of the random vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231011.png" /> that takes values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231012.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231013.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231014.png" />. Then
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231015.png" /></td> </tr></table>
+
A statistical test intended for testing the hypothesis  $  H _  \star  $
 +
according to which the probability density (cf. [[Density of a probability distribution|Density of a probability distribution]]) of an observable random vector  $  X = ( X _ {1} \dots X _ {n} ) $
 +
belongs to the family of all  $  n $-
 +
dimensional densities that are symmetric with respect to permutation of their arguments.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231016.png" /> is any vector from the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231017.png" /> of all permutations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231018.png" /> of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231019.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231020.png" /> is the set of all realizations of the vector of ranks <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231021.png" /> naturally arising in constructing the order statistic vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231022.png" /> that takes values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231023.png" /> in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231024.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231025.png" /> is true, then the statistics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231027.png" /> are stochastically independent, and
+
Assume that one has to test the hypothesis  $  H _  \star  $
 +
that the probability density  $  p( x) $
 +
of the random vector $  X $
 +
belongs to the family  $  \mathbf H _  \star  = \{ p( x) \} $
 +
of all $  n $-
 +
dimensional densities  $  p( x) = p( x _ {1} \dots x _ {n} ) $
 +
that are symmetric with respect to permutation of the arguments  $  x _ {1} \dots x _ {n} $,
 +
from a realization of the random vector $  X = ( X _ {1} \dots X _ {n)} $
 +
that takes values $  x = ( x _ {1} \dots x _ {n} ) $
 +
in $  n $-
 +
dimensional Euclidean space  $  \mathbf R  ^ {n} $.  
 +
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231028.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$
 +
p( x)  \in  \mathbf H _  \star  \iff  p( x _ {1} \dots x _ {n} )  = p( x _ {r _ {1}  } \dots x _ {r _ {n}  } ),
 +
$$
  
and the probability density for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231029.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231031.png" />.
+
where  $  r = ( r _ {1} \dots r _ {n} ) $
 +
is any vector from the space  $  \mathfrak R $
 +
of all permutations  $  ( r _ {1} \dots r _ {n} ) $
 +
of the vector  $  ( 1 \dots n) $.  
 +
The space  $  \mathfrak R $
 +
is the set of all realizations of the vector of ranks  $  R = ( R _ {1} \dots R _ {n} ) $
 +
naturally arising in constructing the order statistic vector  $  X  ^ {(.)} $
 +
that takes values  $  x  ^ {(.)} $
 +
in the set  $  \mathfrak X  ^ {(.)} \subset  \mathbf R  ^ {n} $.  
 +
If  $  H _  \star  $
 +
is true, then the statistics  $  X  ^ {(.)} $
 +
and  $  R $
 +
are stochastically independent, and
  
Property (*) of the uniform distribution for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231032.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231033.png" /> is true forms the basis of constructing the permutation test.
+
$$ \tag{* }
 +
{\mathsf P} \{ R = r \}  =
 +
\frac{1}{n!}
 +
,\  r \in \mathfrak R ,
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231034.png" /> is a function defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231035.png" /> in such a way that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231036.png" /> and such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231037.png" /> it is measurable with respect to the Borel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231038.png" />-algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231039.png" />, and if also for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231040.png" />,
+
and the probability density for $  X  ^ {(.)} $
 +
is $  n!p( x  ^ {(.)} ) $,  
 +
$  x  ^ {(.)} \in \mathfrak X  ^ {(.)} $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231041.png" /></td> </tr></table>
+
Property (*) of the uniform distribution for  $  R $
 +
if  $  H _  \star  $
 +
is true forms the basis of constructing the permutation test.
  
almost-everywhere, then the statistical test for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231042.png" /> with critical function
+
If  $  \Psi ( x  ^ {(.)} , r) $
 +
is a function defined on  $  \mathfrak X  ^ {(.)} \times \mathfrak R $
 +
in such a way that  $  0 \leq  \Psi \leq  1 $
 +
and such that for any  $  r \in \mathfrak R $
 +
it is measurable with respect to the Borel  $  \sigma $-
 +
algebra of  $  \mathfrak X  ^ {(.)} $,  
 +
and if also for some  $  \alpha \in ( 0, 1) $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231043.png" /></td> </tr></table>
+
$$
  
is called the permutation test. If the permutation test is not randomized, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231044.png" /> should be taken a multiple of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231045.png" />.
+
\frac{1}{n!}
 +
\sum _ {r \in \mathfrak R } \Psi ( x  ^ {(.)} , r)  = \alpha
 +
$$
  
The most-powerful test for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231046.png" /> against a simple alternative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231047.png" /> can be found in the family of permutation tests, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231048.png" /> is any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231049.png" />-dimensional density not belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072310/p07231050.png" />.
+
almost-everywhere, then the statistical test for testing $  H _  \star  $
 +
with critical function
 +
 
 +
$$
 +
\phi ( x)  = \phi ( x _ {1} \dots x _ {n} )  = \Psi ( x  ^ {(.)} , r)
 +
$$
 +
 
 +
is called the permutation test. If the permutation test is not randomized,  $  \alpha $
 +
should be taken a multiple of  $  1/n! $.
 +
 
 +
The most-powerful test for testing  $  H _  \star  $
 +
against a simple alternative $  q( x) $
 +
can be found in the family of permutation tests, where $  q( x) $
 +
is any $  n $-
 +
dimensional density not belonging to $  \mathbf H _  \star  $.
  
 
The family of permutation tests and the family of tests that are invariant under a change in the shift and scale parameters play significant roles in constructing rank tests (cf. [[Rank test|Rank test]]). Finally, in the literature on mathematical statistics, one frequently finds the term permutation test replaced by  "randomization test" .
 
The family of permutation tests and the family of tests that are invariant under a change in the shift and scale parameters play significant roles in constructing rank tests (cf. [[Rank test|Rank test]]). Finally, in the literature on mathematical statistics, one frequently finds the term permutation test replaced by  "randomization test" .

Latest revision as of 08:05, 6 June 2020


A statistical test intended for testing the hypothesis $ H _ \star $ according to which the probability density (cf. Density of a probability distribution) of an observable random vector $ X = ( X _ {1} \dots X _ {n} ) $ belongs to the family of all $ n $- dimensional densities that are symmetric with respect to permutation of their arguments.

Assume that one has to test the hypothesis $ H _ \star $ that the probability density $ p( x) $ of the random vector $ X $ belongs to the family $ \mathbf H _ \star = \{ p( x) \} $ of all $ n $- dimensional densities $ p( x) = p( x _ {1} \dots x _ {n} ) $ that are symmetric with respect to permutation of the arguments $ x _ {1} \dots x _ {n} $, from a realization of the random vector $ X = ( X _ {1} \dots X _ {n)} $ that takes values $ x = ( x _ {1} \dots x _ {n} ) $ in $ n $- dimensional Euclidean space $ \mathbf R ^ {n} $. Then

$$ p( x) \in \mathbf H _ \star \iff p( x _ {1} \dots x _ {n} ) = p( x _ {r _ {1} } \dots x _ {r _ {n} } ), $$

where $ r = ( r _ {1} \dots r _ {n} ) $ is any vector from the space $ \mathfrak R $ of all permutations $ ( r _ {1} \dots r _ {n} ) $ of the vector $ ( 1 \dots n) $. The space $ \mathfrak R $ is the set of all realizations of the vector of ranks $ R = ( R _ {1} \dots R _ {n} ) $ naturally arising in constructing the order statistic vector $ X ^ {(.)} $ that takes values $ x ^ {(.)} $ in the set $ \mathfrak X ^ {(.)} \subset \mathbf R ^ {n} $. If $ H _ \star $ is true, then the statistics $ X ^ {(.)} $ and $ R $ are stochastically independent, and

$$ \tag{* } {\mathsf P} \{ R = r \} = \frac{1}{n!} ,\ r \in \mathfrak R , $$

and the probability density for $ X ^ {(.)} $ is $ n!p( x ^ {(.)} ) $, $ x ^ {(.)} \in \mathfrak X ^ {(.)} $.

Property (*) of the uniform distribution for $ R $ if $ H _ \star $ is true forms the basis of constructing the permutation test.

If $ \Psi ( x ^ {(.)} , r) $ is a function defined on $ \mathfrak X ^ {(.)} \times \mathfrak R $ in such a way that $ 0 \leq \Psi \leq 1 $ and such that for any $ r \in \mathfrak R $ it is measurable with respect to the Borel $ \sigma $- algebra of $ \mathfrak X ^ {(.)} $, and if also for some $ \alpha \in ( 0, 1) $,

$$ \frac{1}{n!} \sum _ {r \in \mathfrak R } \Psi ( x ^ {(.)} , r) = \alpha $$

almost-everywhere, then the statistical test for testing $ H _ \star $ with critical function

$$ \phi ( x) = \phi ( x _ {1} \dots x _ {n} ) = \Psi ( x ^ {(.)} , r) $$

is called the permutation test. If the permutation test is not randomized, $ \alpha $ should be taken a multiple of $ 1/n! $.

The most-powerful test for testing $ H _ \star $ against a simple alternative $ q( x) $ can be found in the family of permutation tests, where $ q( x) $ is any $ n $- dimensional density not belonging to $ \mathbf H _ \star $.

The family of permutation tests and the family of tests that are invariant under a change in the shift and scale parameters play significant roles in constructing rank tests (cf. Rank test). Finally, in the literature on mathematical statistics, one frequently finds the term permutation test replaced by "randomization test" .

See Order statistic; Invariant test; Critical function.

References

[1] J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967)
[2] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)
How to Cite This Entry:
Permutation test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Permutation_test&oldid=48162
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article