|
|
Line 1: |
Line 1: |
− | A [[Compactification|compactification]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720301.png" /> of a [[Completely-regular space|completely-regular space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720302.png" /> such that the closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720303.png" /> of the boundary of any open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720304.png" /> coincides with the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720305.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720306.png" /> is the maximal open set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720307.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720308.png" />. Equivalent definitions are as follows:
| + | <!-- |
| + | p0720301.png |
| + | $#A+1 = 45 n = 0 |
| + | $#C+1 = 45 : ~/encyclopedia/old_files/data/P072/P.0702030 Perfect compactification |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720309.png" /> for any pair of disjoint open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203010.png" />;
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | b) if a closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203011.png" /> partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203012.png" /> into open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203014.png" />, then the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203016.png" /> partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203017.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203019.png" />;
| + | A [[Compactification|compactification]] $ Y $ |
| + | of a [[Completely-regular space|completely-regular space]] $ X $ |
| + | such that the closure in $ Y $ |
| + | of the boundary of any open set $ U \subset X $ |
| + | coincides with the boundary of $ O( U) $, |
| + | where $ O( U) $ |
| + | is the maximal open set in $ Y $ |
| + | for which $ O( U) \cap X = U $. |
| + | Equivalent definitions are as follows: |
| | | |
− | c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203020.png" /> does not partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203021.png" /> locally at any of its points.
| + | a) $ O( U \cup V )= O( U) \cup O( V) $ |
| + | for any pair of disjoint open sets $ U, V $; |
| | | |
− | A compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203022.png" /> is perfect if and only if the natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203023.png" /> is monotone; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203024.png" /> is the [[Stone–Čech compactification|Stone–Čech compactification]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203025.png" />. Also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203026.png" /> is the unique perfect compactification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203027.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203028.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203029.png" /> a compactum and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203030.png" />. The local connectedness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203031.png" /> implies the local connectedness of any perfect extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203033.png" /> satisfying the [[First axiom of countability|first axiom of countability]] (and also the local connectedness of all intermediate extensions). Among all the perfect compactifications of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203034.png" /> there is a minimal one, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203035.png" />, if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203036.png" /> has at least one compactification with punctiform remainder (cf. [[Remainder of a space|Remainder of a space]]). The remainder in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203037.png" /> is punctiform and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203038.png" /> is the maximal such extension among those with punctiform remainder. Every homeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203039.png" /> extends to a homeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203040.png" />, and every [[Perfect mapping|perfect mapping]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203041.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203042.png" /> extends to a mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203043.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203044.png" /> (provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203045.png" /> exists).
| + | b) if a closed set $ F $ |
| + | partitions $ X $ |
| + | into open sets $ U $ |
| + | and $ V $, |
| + | then the closure of $ F $ |
| + | in $ Y $ |
| + | partitions $ Y $ |
| + | into $ O( U) $ |
| + | and $ O( V) $; |
| | | |
| + | c) $ Y \setminus X $ |
| + | does not partition $ Y $ |
| + | locally at any of its points. |
| | | |
| + | A compactification $ \gamma X $ |
| + | is perfect if and only if the natural mapping $ \beta \mathop{\rm id} _ {X} : \beta X \rightarrow \gamma X $ |
| + | is monotone; here $ \beta $ |
| + | is the [[Stone–Čech compactification|Stone–Čech compactification]] of $ X $. |
| + | Also, $ \beta X $ |
| + | is the unique perfect compactification of $ X $ |
| + | if and only if $ X= A \cup M $ |
| + | with $ A $ |
| + | a compactum and $ \mathop{\rm dim} M = 0 $. |
| + | The local connectedness of $ X $ |
| + | implies the local connectedness of any perfect extension $ Y $ |
| + | of $ X $ |
| + | satisfying the [[First axiom of countability|first axiom of countability]] (and also the local connectedness of all intermediate extensions). Among all the perfect compactifications of $ X $ |
| + | there is a minimal one, $ \mu X $, |
| + | if and only if $ X $ |
| + | has at least one compactification with punctiform remainder (cf. [[Remainder of a space|Remainder of a space]]). The remainder in $ \mu X $ |
| + | is punctiform and $ \mu X $ |
| + | is the maximal such extension among those with punctiform remainder. Every homeomorphism of $ X $ |
| + | extends to a homeomorphism of $ \mu X $, |
| + | and every [[Perfect mapping|perfect mapping]] from $ X $ |
| + | onto $ X ^ \prime $ |
| + | extends to a mapping from $ \mu X $ |
| + | onto $ \mu X ^ \prime $( |
| + | provided $ \mu X ^ \prime $ |
| + | exists). |
| | | |
| ====Comments==== | | ====Comments==== |
A compactification $ Y $
of a completely-regular space $ X $
such that the closure in $ Y $
of the boundary of any open set $ U \subset X $
coincides with the boundary of $ O( U) $,
where $ O( U) $
is the maximal open set in $ Y $
for which $ O( U) \cap X = U $.
Equivalent definitions are as follows:
a) $ O( U \cup V )= O( U) \cup O( V) $
for any pair of disjoint open sets $ U, V $;
b) if a closed set $ F $
partitions $ X $
into open sets $ U $
and $ V $,
then the closure of $ F $
in $ Y $
partitions $ Y $
into $ O( U) $
and $ O( V) $;
c) $ Y \setminus X $
does not partition $ Y $
locally at any of its points.
A compactification $ \gamma X $
is perfect if and only if the natural mapping $ \beta \mathop{\rm id} _ {X} : \beta X \rightarrow \gamma X $
is monotone; here $ \beta $
is the Stone–Čech compactification of $ X $.
Also, $ \beta X $
is the unique perfect compactification of $ X $
if and only if $ X= A \cup M $
with $ A $
a compactum and $ \mathop{\rm dim} M = 0 $.
The local connectedness of $ X $
implies the local connectedness of any perfect extension $ Y $
of $ X $
satisfying the first axiom of countability (and also the local connectedness of all intermediate extensions). Among all the perfect compactifications of $ X $
there is a minimal one, $ \mu X $,
if and only if $ X $
has at least one compactification with punctiform remainder (cf. Remainder of a space). The remainder in $ \mu X $
is punctiform and $ \mu X $
is the maximal such extension among those with punctiform remainder. Every homeomorphism of $ X $
extends to a homeomorphism of $ \mu X $,
and every perfect mapping from $ X $
onto $ X ^ \prime $
extends to a mapping from $ \mu X $
onto $ \mu X ^ \prime $(
provided $ \mu X ^ \prime $
exists).
A space is called punctiform if and only if no compact connected subset contains more than one point.
References
[a1] | A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) pp. 232ff (Translated from Russian) |