Difference between revisions of "Over-convergence"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | o0706501.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/O070/O.0700650 Over\AAhconvergence | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Convergence of a certain subsequence of partial sums of a series in a domain that is larger than the domain of convergence of the series. The following theorems on over-convergence hold: | Convergence of a certain subsequence of partial sums of a series in a domain that is larger than the domain of convergence of the series. The following theorems on over-convergence hold: | ||
1) If for a power series | 1) If for a power series | ||
− | + | $$ | |
+ | f ( z) = \ | ||
+ | \sum _ { n= } 1 ^ \infty | ||
+ | a _ {n} z ^ {\lambda _ {n} } | ||
+ | $$ | ||
− | with radius of convergence < | + | with radius of convergence $ R $, |
+ | $ 0 < R < \infty $, | ||
+ | the exponents $ \lambda _ {n} $ | ||
+ | are such that for an infinite set of values $ n _ \nu $ | ||
+ | of $ n $: | ||
− | + | $$ | |
+ | \lambda _ {n _ \nu + 1 } - \lambda _ {n _ \nu } > \ | ||
+ | \theta \lambda _ {n _ \nu } , | ||
+ | $$ | ||
− | where | + | where $ \theta $ |
+ | is a fixed positive number, then the sequence of partial sums of orders $ n _ \nu $, | ||
− | + | $$ | |
+ | S _ { n _ \nu } ( z) = \ | ||
+ | \sum _ { m= } 1 ^ { {n _ \nu } } | ||
+ | a _ {m} z ^ {\lambda _ {m} } ,\ \ | ||
+ | \nu = 1 , 2 \dots | ||
+ | $$ | ||
− | converges uniformly in a sufficiently small neighbourhood of each point | + | converges uniformly in a sufficiently small neighbourhood of each point $ z _ {0} $ |
+ | of the circle $ | z | = R $ | ||
+ | on which the sum of the series for $ f ( z) $ | ||
+ | is regular. | ||
2) If | 2) If | ||
− | + | $$ | |
+ | \lambda _ {n _ \nu + 1 } - \lambda _ {n _ \nu } > \ | ||
+ | \theta _ \nu \lambda _ {n _ \nu } ,\ \ | ||
+ | \lim\limits _ {\nu \rightarrow \infty } \theta _ \nu = + \infty , | ||
+ | $$ | ||
− | then the sequence | + | then the sequence $ \{ S _ {n _ \nu } ( z) \} $ |
+ | converges uniformly in any closed bounded part of the domain of existence of $ f ( z) $. | ||
The following theorem also holds (the converse of 1)): If a power series | The following theorem also holds (the converse of 1)): If a power series | ||
− | + | $$ | |
+ | f ( z) = \ | ||
+ | \sum _ { n= } 0 ^ \infty | ||
+ | a _ {n} z ^ {n} | ||
+ | $$ | ||
− | with radius of convergence < | + | with radius of convergence $ R $, |
+ | $ 0 < R < \infty $, | ||
+ | has a subsequence of partial sums that is uniformly convergent in some neighbourhood of $ z _ {0} $, | ||
+ | $ | z _ {0} | \geq R $, | ||
+ | then this power series can be represented as the sum of a series with radius of convergence greater than $ R $ | ||
+ | and a [[Lacunary power series|lacunary power series]]: | ||
− | + | $$ | |
+ | \sum _ { n= } 1 ^ \infty d _ {n} z ^ {\lambda _ {n} } ,\ \ | ||
+ | \lambda _ {n _ {k} + 1 } - \lambda _ {n _ {k} } > \ | ||
+ | \theta \lambda _ {n _ {k} } ,\ \ | ||
+ | k = 1 , 2 ,\dots ; \ \ | ||
+ | \theta > 0. | ||
+ | $$ | ||
The first theorem is true for many other series, in particular for [[Dirichlet series|Dirichlet series]]. | The first theorem is true for many other series, in particular for [[Dirichlet series|Dirichlet series]]. | ||
Line 33: | Line 85: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. [L. Il'ev] Ilieff, "Analytische Nichtfortsetzbarkeit und Überkonvergenz einiger Klassen von Potenzreihen" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L. [L. Il'ev] Ilieff, "Analytische Nichtfortsetzbarkeit und Überkonvergenz einiger Klassen von Potenzreihen" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian)</TD></TR></table> |
Revision as of 08:04, 6 June 2020
Convergence of a certain subsequence of partial sums of a series in a domain that is larger than the domain of convergence of the series. The following theorems on over-convergence hold:
1) If for a power series
$$ f ( z) = \ \sum _ { n= } 1 ^ \infty a _ {n} z ^ {\lambda _ {n} } $$
with radius of convergence $ R $, $ 0 < R < \infty $, the exponents $ \lambda _ {n} $ are such that for an infinite set of values $ n _ \nu $ of $ n $:
$$ \lambda _ {n _ \nu + 1 } - \lambda _ {n _ \nu } > \ \theta \lambda _ {n _ \nu } , $$
where $ \theta $ is a fixed positive number, then the sequence of partial sums of orders $ n _ \nu $,
$$ S _ { n _ \nu } ( z) = \ \sum _ { m= } 1 ^ { {n _ \nu } } a _ {m} z ^ {\lambda _ {m} } ,\ \ \nu = 1 , 2 \dots $$
converges uniformly in a sufficiently small neighbourhood of each point $ z _ {0} $ of the circle $ | z | = R $ on which the sum of the series for $ f ( z) $ is regular.
2) If
$$ \lambda _ {n _ \nu + 1 } - \lambda _ {n _ \nu } > \ \theta _ \nu \lambda _ {n _ \nu } ,\ \ \lim\limits _ {\nu \rightarrow \infty } \theta _ \nu = + \infty , $$
then the sequence $ \{ S _ {n _ \nu } ( z) \} $ converges uniformly in any closed bounded part of the domain of existence of $ f ( z) $.
The following theorem also holds (the converse of 1)): If a power series
$$ f ( z) = \ \sum _ { n= } 0 ^ \infty a _ {n} z ^ {n} $$
with radius of convergence $ R $, $ 0 < R < \infty $, has a subsequence of partial sums that is uniformly convergent in some neighbourhood of $ z _ {0} $, $ | z _ {0} | \geq R $, then this power series can be represented as the sum of a series with radius of convergence greater than $ R $ and a lacunary power series:
$$ \sum _ { n= } 1 ^ \infty d _ {n} z ^ {\lambda _ {n} } ,\ \ \lambda _ {n _ {k} + 1 } - \lambda _ {n _ {k} } > \ \theta \lambda _ {n _ {k} } ,\ \ k = 1 , 2 ,\dots ; \ \ \theta > 0. $$
The first theorem is true for many other series, in particular for Dirichlet series.
References
[1] | L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) pp. Sect. 3 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[3] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
Comments
References
[a1] | L. [L. Il'ev] Ilieff, "Analytische Nichtfortsetzbarkeit und Überkonvergenz einiger Klassen von Potenzreihen" , Deutsch. Verlag Wissenschaft. (1960) (Translated from Russian) |
Over-convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Over-convergence&oldid=48090