Difference between revisions of "One-parameter subgroup"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0682001.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/O068/O.0608200 One\AAhparameter subgroup | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of a Lie group $ G $ | |
+ | over a normed field $ K $'' | ||
− | + | An analytic homomorphism of the additive group of the field $ K $ | |
+ | into $ G $, | ||
+ | that is, an analytic mapping $ \alpha : K \rightarrow G $ | ||
+ | such that | ||
− | + | $$ | |
+ | \alpha ( s + t) = \alpha ( s) \alpha ( t),\ s, t \in K. | ||
+ | $$ | ||
− | If | + | The image of this homomorphism, which is a subgroup of $ G $, |
+ | is also called a one-parameter subgroup. If $ K = \mathbf R $, | ||
+ | then the continuity of the homomorphism $ \alpha : K \rightarrow G $ | ||
+ | implies that it is analytic. If $ K = \mathbf R $ | ||
+ | or $ \mathbf C $, | ||
+ | then for any tangent vector $ X \in T _ {e} G $ | ||
+ | to $ G $ | ||
+ | at the point $ e $ | ||
+ | there exists a unique one-parameter subgroup $ \alpha : K \rightarrow G $ | ||
+ | having $ X $ | ||
+ | as its tangent vector at the point $ t = 0 $. | ||
+ | Here $ \alpha ( t) = \mathop{\rm exp} tX $, | ||
+ | $ t \in K $, | ||
+ | where $ \mathop{\rm exp} : T _ {e} G \rightarrow G $ | ||
+ | is the [[Exponential mapping|exponential mapping]]. In particular, any one-parameter subgroup of the [[General linear group|general linear group]] $ G = \mathop{\rm GL} ( n, K) $ | ||
+ | has the form | ||
+ | |||
+ | $$ | ||
+ | \alpha ( t) = \mathop{\rm exp} tX = \ | ||
+ | \sum _ {n = 0 } ^ \infty | ||
+ | { | ||
+ | \frac{1}{n! } | ||
+ | } | ||
+ | t ^ {n} X ^ {n} . | ||
+ | $$ | ||
+ | |||
+ | If $ G $ | ||
+ | is a real Lie group endowed with a two-sidedly invariant pseudo-Riemannian metric or affine connection, then the one-parameter subgroups of $ G $ | ||
+ | are the geodesics passing through the identity $ e $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1972) pp. Chapt. 2; 3</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Hochschild, "Structure of Lie groups" , Holden-Day (1965)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1972) pp. Chapt. 2; 3</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Hochschild, "Structure of Lie groups" , Holden-Day (1965)</TD></TR></table> |
Latest revision as of 08:04, 6 June 2020
of a Lie group $ G $
over a normed field $ K $
An analytic homomorphism of the additive group of the field $ K $ into $ G $, that is, an analytic mapping $ \alpha : K \rightarrow G $ such that
$$ \alpha ( s + t) = \alpha ( s) \alpha ( t),\ s, t \in K. $$
The image of this homomorphism, which is a subgroup of $ G $, is also called a one-parameter subgroup. If $ K = \mathbf R $, then the continuity of the homomorphism $ \alpha : K \rightarrow G $ implies that it is analytic. If $ K = \mathbf R $ or $ \mathbf C $, then for any tangent vector $ X \in T _ {e} G $ to $ G $ at the point $ e $ there exists a unique one-parameter subgroup $ \alpha : K \rightarrow G $ having $ X $ as its tangent vector at the point $ t = 0 $. Here $ \alpha ( t) = \mathop{\rm exp} tX $, $ t \in K $, where $ \mathop{\rm exp} : T _ {e} G \rightarrow G $ is the exponential mapping. In particular, any one-parameter subgroup of the general linear group $ G = \mathop{\rm GL} ( n, K) $ has the form
$$ \alpha ( t) = \mathop{\rm exp} tX = \ \sum _ {n = 0 } ^ \infty { \frac{1}{n! } } t ^ {n} X ^ {n} . $$
If $ G $ is a real Lie group endowed with a two-sidedly invariant pseudo-Riemannian metric or affine connection, then the one-parameter subgroups of $ G $ are the geodesics passing through the identity $ e $.
References
[1] | L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian) |
[2] | J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French) |
[3] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
Comments
References
[a1] | N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French) |
[a2] | N. Bourbaki, "Groupes et algèbres de Lie" , Hermann (1972) pp. Chapt. 2; 3 |
[a3] | G. Hochschild, "Structure of Lie groups" , Holden-Day (1965) |
One-parameter subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=One-parameter_subgroup&oldid=48042