Difference between revisions of "Néron model"
m (links) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | n0662901.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/N066/N.0606290 N\Aeeron model | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of an Abelian variety'' | ''of an Abelian variety'' | ||
− | A [[Group scheme|group scheme]] associated to an [[Abelian variety|Abelian variety]] and having a certain minimality property. If | + | A [[Group scheme|group scheme]] associated to an [[Abelian variety|Abelian variety]] and having a certain minimality property. If $ R $ |
+ | is a local Henselian [[discrete valuation ring]] with residue field $ k $ | ||
+ | and [[field of fractions]] $ K $ | ||
+ | and if $ A $ | ||
+ | is an Abelian variety of dimension $ d $ | ||
+ | over $ K $, | ||
+ | then a Néron model of $ A $ | ||
+ | is defined as a smooth commutative group scheme $ \mathfrak A $ | ||
+ | over $ R $ | ||
+ | whose generic fibre $ \mathfrak A _ {K} $ | ||
+ | is isomorphic to $ A $, | ||
+ | while the canonical homomorphism $ \mathfrak A ( R) \rightarrow \mathfrak A _ {K} ( K) $ | ||
+ | is an isomorphism. This concept was introduced by A. Néron [[#References|[1]]] in the case of a perfect field. In the local case a Néron model exists and is uniquely determined up to an $ R $- | ||
+ | isomorphism. A Néron model has the following minimality property: For any smooth $ R $- | ||
+ | scheme $ \mathfrak X $ | ||
+ | and any morphism $ \phi : \mathfrak X _ {K} \rightarrow \mathfrak A _ {K} $ | ||
+ | of the generic fibres there exists a unique morphism $ \overline \phi \; : \mathfrak X \rightarrow \mathfrak A $ | ||
+ | of $ R $- | ||
+ | schemes induced by $ \phi $. | ||
− | If | + | If $ S $ |
+ | is a one-dimensional regular Noetherian scheme, $ \eta $ | ||
+ | is a generic point of it, $ i : \eta \rightarrow S $ | ||
+ | is its canonical imbedding, and $ A $ | ||
+ | is an Abelian variety over $ k( \eta ) $, | ||
+ | then a Néron model of $ A $ | ||
+ | is defined as a smooth quasi-projective group scheme $ \mathfrak A $ | ||
+ | over $ S $ | ||
+ | that represents the sheaf $ i _ {*} A $ | ||
+ | relative to the flat Grothendieck topology on $ S $( | ||
+ | see [[#References|[4]]]). | ||
For a generalization of the concept of a Néron model to arbitrary schemes see [[#References|[3]]]. | For a generalization of the concept of a Néron model to arbitrary schemes see [[#References|[3]]]. | ||
Line 9: | Line 49: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Néron, "Modèles minimaux des variétés abéliennes sur les corps locaux et globaux" ''Publ. Math. IHES'' , '''21''' (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B. Mazur, "Rational points of Abelian varieties with values in towers of number fields" ''Invent. Math.'' , '''18''' (1974) pp. 183–266</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Raynaud, "Modèles de Néron" ''C.R. Acad. Sci. Paris Sér. A'' , '''262''' (1966) pp. 345–347</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Raynaud, "Caractéristique d'Euler–Poincaré d'un faisceau et cohomologie des variétés abéliennes (d'après Ogg–Shafarévitch et Grothendieck)" A. Grothendieck (ed.) J. Giraud (ed.) et al. (ed.) , ''Dix exposés sur la cohomologie des schémas'' , North-Holland & Masson (1968) pp. 12–30</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Groupes de monodromie en géométrie algébrique. SGA 7'' , ''Lect. notes in math.'' , '''288''' , Springer (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Néron, "Modèles minimaux des variétés abéliennes sur les corps locaux et globaux" ''Publ. Math. IHES'' , '''21''' (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> B. Mazur, "Rational points of Abelian varieties with values in towers of number fields" ''Invent. Math.'' , '''18''' (1974) pp. 183–266</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Raynaud, "Modèles de Néron" ''C.R. Acad. Sci. Paris Sér. A'' , '''262''' (1966) pp. 345–347</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M. Raynaud, "Caractéristique d'Euler–Poincaré d'un faisceau et cohomologie des variétés abéliennes (d'après Ogg–Shafarévitch et Grothendieck)" A. Grothendieck (ed.) J. Giraud (ed.) et al. (ed.) , ''Dix exposés sur la cohomologie des schémas'' , North-Holland & Masson (1968) pp. 12–30</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Groupes de monodromie en géométrie algébrique. SGA 7'' , ''Lect. notes in math.'' , '''288''' , Springer (1972)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Artin, "Néron models" G. Cornell (ed.) J. Silverman (ed.) , ''Arithmetic geometry'' , Springer (1986) pp. 213–230</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Artin, "Néron models" G. Cornell (ed.) J. Silverman (ed.) , ''Arithmetic geometry'' , Springer (1986) pp. 213–230</TD></TR></table> |
Latest revision as of 08:03, 6 June 2020
of an Abelian variety
A group scheme associated to an Abelian variety and having a certain minimality property. If $ R $ is a local Henselian discrete valuation ring with residue field $ k $ and field of fractions $ K $ and if $ A $ is an Abelian variety of dimension $ d $ over $ K $, then a Néron model of $ A $ is defined as a smooth commutative group scheme $ \mathfrak A $ over $ R $ whose generic fibre $ \mathfrak A _ {K} $ is isomorphic to $ A $, while the canonical homomorphism $ \mathfrak A ( R) \rightarrow \mathfrak A _ {K} ( K) $ is an isomorphism. This concept was introduced by A. Néron [1] in the case of a perfect field. In the local case a Néron model exists and is uniquely determined up to an $ R $- isomorphism. A Néron model has the following minimality property: For any smooth $ R $- scheme $ \mathfrak X $ and any morphism $ \phi : \mathfrak X _ {K} \rightarrow \mathfrak A _ {K} $ of the generic fibres there exists a unique morphism $ \overline \phi \; : \mathfrak X \rightarrow \mathfrak A $ of $ R $- schemes induced by $ \phi $.
If $ S $ is a one-dimensional regular Noetherian scheme, $ \eta $ is a generic point of it, $ i : \eta \rightarrow S $ is its canonical imbedding, and $ A $ is an Abelian variety over $ k( \eta ) $, then a Néron model of $ A $ is defined as a smooth quasi-projective group scheme $ \mathfrak A $ over $ S $ that represents the sheaf $ i _ {*} A $ relative to the flat Grothendieck topology on $ S $( see [4]).
For a generalization of the concept of a Néron model to arbitrary schemes see [3].
References
[1] | A. Néron, "Modèles minimaux des variétés abéliennes sur les corps locaux et globaux" Publ. Math. IHES , 21 (1964) |
[2] | B. Mazur, "Rational points of Abelian varieties with values in towers of number fields" Invent. Math. , 18 (1974) pp. 183–266 |
[3] | M. Raynaud, "Modèles de Néron" C.R. Acad. Sci. Paris Sér. A , 262 (1966) pp. 345–347 |
[4] | M. Raynaud, "Caractéristique d'Euler–Poincaré d'un faisceau et cohomologie des variétés abéliennes (d'après Ogg–Shafarévitch et Grothendieck)" A. Grothendieck (ed.) J. Giraud (ed.) et al. (ed.) , Dix exposés sur la cohomologie des schémas , North-Holland & Masson (1968) pp. 12–30 |
[5] | A. Grothendieck (ed.) et al. (ed.) , Groupes de monodromie en géométrie algébrique. SGA 7 , Lect. notes in math. , 288 , Springer (1972) |
Comments
References
[a1] | M. Artin, "Néron models" G. Cornell (ed.) J. Silverman (ed.) , Arithmetic geometry , Springer (1986) pp. 213–230 |
Néron model. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=N%C3%A9ron_model&oldid=48032