Difference between revisions of "Normal sheaf"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | n0676401.png | ||
+ | $#A+1 = 83 n = 0 | ||
+ | $#C+1 = 83 : ~/encyclopedia/old_files/data/N067/N.0607640 Normal sheaf | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
An analogue to a [[Normal bundle|normal bundle]] in [[Sheaf theory|sheaf theory]]. Let | An analogue to a [[Normal bundle|normal bundle]] in [[Sheaf theory|sheaf theory]]. Let | ||
− | + | $$ | |
+ | ( f, f ^ { \# } ): ( Y, {\mathcal O} _ {Y} ) \rightarrow ( X, {\mathcal O} _ {X} ) | ||
+ | $$ | ||
− | be a morphism of ringed spaces such that the homomorphism | + | be a morphism of ringed spaces such that the homomorphism $ f ^ { \# } : f ^ { * } {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $ |
+ | is surjective, and let $ {\mathcal J} = \mathop{\rm Ker} f ^ { \# } $. | ||
+ | Then $ {\mathcal J} / {\mathcal J} ^ {2} $ | ||
+ | is a sheaf of ideals in $ f ^ { * } {\mathcal O} _ {X} / {\mathcal J} \cong {\mathcal O} _ {Y} $ | ||
+ | and is, therefore, an $ {\mathcal O} _ {Y} $- | ||
+ | module. Here $ {\mathcal N} _ {Y/X} ^ {*} = ( {\mathcal J} / {\mathcal J} ^ {2} ) $ | ||
+ | is called the conormal sheaf of the morphism and the dual $ {\mathcal O} _ {Y} $- | ||
+ | module $ {\mathcal N} _ {Y/X} = \mathop{\rm Hom} _ { {\mathcal O} _ {Y} } ( {\mathcal N} _ {Y/X} ^ {*} , {\mathcal O} _ {Y} ) $ | ||
+ | is called the normal sheaf of the morphism $ f $. | ||
+ | These sheaves are, as a rule, examined in the following special cases. | ||
− | 1) | + | 1) $ X $ |
+ | and $ Y $ | ||
+ | are differentiable manifolds (for example, of class $ C ^ \infty $), | ||
+ | and $ f: Y \rightarrow X $ | ||
+ | is an immersion. There is an exact sequence of $ {\mathcal O} _ {Y} $- | ||
+ | modules | ||
− | + | $$ | |
+ | 0 \rightarrow {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \ | ||
+ | f ^ { * } \Omega _ {X} ^ {1} \rightarrow \Omega _ {Y} ^ {1} \rightarrow 0, | ||
+ | $$ | ||
− | where | + | where $ \Omega _ {X} ^ {1} $ |
+ | and $ \Omega _ {Y} ^ {1} $ | ||
+ | are the sheaves of germs of smooth $ 1 $- | ||
+ | forms on $ X $ | ||
+ | and $ Y $, | ||
+ | and $ \delta $ | ||
+ | is defined as differentiation of functions. The dual exact sequence | ||
− | + | $$ | |
+ | 0 \rightarrow {\mathcal T} _ {Y} \rightarrow f ^ { * } {\mathcal T} _ {X} \rightarrow {\mathcal N} _ {Y/X} \rightarrow 0, | ||
+ | $$ | ||
− | where | + | where $ {\mathcal T} _ {X} $ |
+ | and $ {\mathcal T} _ {Y} $ | ||
+ | are the tangent sheaves on $ X $ | ||
+ | and $ Y $, | ||
+ | shows that $ {\mathcal N} _ {Y/X} $ | ||
+ | is isomorphic to the sheaf of germs of smooth sections of the [[Normal bundle|normal bundle]] of the immersion $ f $. | ||
+ | If $ Y $ | ||
+ | is an immersed submanifold, then $ {\mathcal N} _ {Y/X} $ | ||
+ | and $ {\mathcal N} _ {Y/X} ^ {*} $ | ||
+ | are called the normal and conormal sheaves of the submanifold $ Y $. | ||
− | 2) | + | 2) $ ( X, {\mathcal O} _ {X} ) $ |
+ | is an irreducible separable scheme of finite type over an algebraically closed field $ k $, | ||
+ | $ ( Y, {\mathcal O} _ {Y} ) $ | ||
+ | is a closed subscheme of it and $ f: Y \rightarrow X $ | ||
+ | is an imbedding. Then $ {\mathcal N} _ {Y/X} $ | ||
+ | and $ {\mathcal N} _ {Y/X} ^ {*} $ | ||
+ | are called the normal and conormal sheaves of the subscheme $ Y $. | ||
+ | There is also an exact sequence of $ {\mathcal O} _ {Y} $- | ||
+ | modules | ||
− | + | $$ \tag{* } | |
+ | {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \Omega _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ | ||
+ | \Omega _ {Y} \rightarrow 0, | ||
+ | $$ | ||
− | where | + | where $ \Omega _ {X} $ |
+ | and $ \Omega _ {Y} $ | ||
+ | are the sheaves of differentials on $ X $ | ||
+ | and $ Y $. | ||
+ | The sheaves $ {\mathcal N} _ {Y/X} ^ {*} $ | ||
+ | and $ {\mathcal N} _ {Y/X} $ | ||
+ | are quasi-coherent, and if $ X $ | ||
+ | is a Noetherian scheme, then they are coherent. If $ X $ | ||
+ | is a non-singular variety over $ k $ | ||
+ | and $ Y $ | ||
+ | is a non-singular variety, then $ {\mathcal N} _ {Y/X} ^ {*} $ | ||
+ | is locally free and the homomorphism $ \delta $ | ||
+ | in (*) is injective. In this case one obtains the dual exact sequence | ||
− | + | $$ | |
+ | 0 \rightarrow {\mathcal T} _ {Y} \rightarrow {\mathcal T} _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ | ||
+ | {\mathcal N} _ {Y/X} \rightarrow 0, | ||
+ | $$ | ||
− | so that the normal sheaf | + | so that the normal sheaf $ {\mathcal N} _ {Y/X} $ |
+ | is locally free of rank $ r = \mathop{\rm codim} Y $ | ||
+ | corresponding to the normal bundle over $ Y $. | ||
+ | In particular, if $ r = 1 $, | ||
+ | then $ {\mathcal N} _ {Y/X} $ | ||
+ | is the invertible sheaf corresponding to the divisor $ Y $. | ||
− | In terms of normal sheaves one can express the self-intersection | + | In terms of normal sheaves one can express the self-intersection $ Y \cdot Y $ |
+ | of a non-singular subvariety $ Y \subset X $. | ||
+ | Namely, $ Y \cdot Y = f _ {*} c _ {r} ( {\mathcal N} _ {Y/X} ) $, | ||
+ | where $ c _ {r} $ | ||
+ | is the $ r $- | ||
+ | th [[Chern class|Chern class]] and $ f _ {*} : A ( Y) \rightarrow A ( X) $ | ||
+ | is the homomorphism of Chow rings (cf. [[Chow ring|Chow ring]]) corresponding to the imbedding $ f: Y \rightarrow X $. | ||
− | 3) | + | 3) $ ( X, {\mathcal O} _ {X} ) $ |
+ | is a complex space, $ ( Y, {\mathcal O} _ {Y} ) $ | ||
+ | is a closed analytic subspace of it and $ f $ | ||
+ | is the imbedding. Then $ {\mathcal N} _ {Y/X} $ | ||
+ | and $ {\mathcal N} _ {Y/X} ^ {*} $ | ||
+ | are called the normal and conormal sheaves of the subspace $ Y $; | ||
+ | they are coherent. If $ X $ | ||
+ | is an analytic manifold and $ Y $ | ||
+ | an analytic submanifold of it, then $ {\mathcal N} _ {Y/X} $ | ||
+ | is the sheaf of germs of holomorphic sections of the normal bundle over $ Y $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | If | + | If $ X $ |
+ | is a non-singular variety over $ k $ | ||
+ | and $ Y $ | ||
+ | is a subscheme of $ X $ | ||
+ | that is locally a complete intersection, then $ {\mathcal N} _ {Y/X} ^ {*} $ | ||
+ | is locally free. |
Latest revision as of 08:03, 6 June 2020
An analogue to a normal bundle in sheaf theory. Let
$$ ( f, f ^ { \# } ): ( Y, {\mathcal O} _ {Y} ) \rightarrow ( X, {\mathcal O} _ {X} ) $$
be a morphism of ringed spaces such that the homomorphism $ f ^ { \# } : f ^ { * } {\mathcal O} _ {X} \rightarrow {\mathcal O} _ {Y} $ is surjective, and let $ {\mathcal J} = \mathop{\rm Ker} f ^ { \# } $. Then $ {\mathcal J} / {\mathcal J} ^ {2} $ is a sheaf of ideals in $ f ^ { * } {\mathcal O} _ {X} / {\mathcal J} \cong {\mathcal O} _ {Y} $ and is, therefore, an $ {\mathcal O} _ {Y} $- module. Here $ {\mathcal N} _ {Y/X} ^ {*} = ( {\mathcal J} / {\mathcal J} ^ {2} ) $ is called the conormal sheaf of the morphism and the dual $ {\mathcal O} _ {Y} $- module $ {\mathcal N} _ {Y/X} = \mathop{\rm Hom} _ { {\mathcal O} _ {Y} } ( {\mathcal N} _ {Y/X} ^ {*} , {\mathcal O} _ {Y} ) $ is called the normal sheaf of the morphism $ f $. These sheaves are, as a rule, examined in the following special cases.
1) $ X $ and $ Y $ are differentiable manifolds (for example, of class $ C ^ \infty $), and $ f: Y \rightarrow X $ is an immersion. There is an exact sequence of $ {\mathcal O} _ {Y} $- modules
$$ 0 \rightarrow {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \ f ^ { * } \Omega _ {X} ^ {1} \rightarrow \Omega _ {Y} ^ {1} \rightarrow 0, $$
where $ \Omega _ {X} ^ {1} $ and $ \Omega _ {Y} ^ {1} $ are the sheaves of germs of smooth $ 1 $- forms on $ X $ and $ Y $, and $ \delta $ is defined as differentiation of functions. The dual exact sequence
$$ 0 \rightarrow {\mathcal T} _ {Y} \rightarrow f ^ { * } {\mathcal T} _ {X} \rightarrow {\mathcal N} _ {Y/X} \rightarrow 0, $$
where $ {\mathcal T} _ {X} $ and $ {\mathcal T} _ {Y} $ are the tangent sheaves on $ X $ and $ Y $, shows that $ {\mathcal N} _ {Y/X} $ is isomorphic to the sheaf of germs of smooth sections of the normal bundle of the immersion $ f $. If $ Y $ is an immersed submanifold, then $ {\mathcal N} _ {Y/X} $ and $ {\mathcal N} _ {Y/X} ^ {*} $ are called the normal and conormal sheaves of the submanifold $ Y $.
2) $ ( X, {\mathcal O} _ {X} ) $ is an irreducible separable scheme of finite type over an algebraically closed field $ k $, $ ( Y, {\mathcal O} _ {Y} ) $ is a closed subscheme of it and $ f: Y \rightarrow X $ is an imbedding. Then $ {\mathcal N} _ {Y/X} $ and $ {\mathcal N} _ {Y/X} ^ {*} $ are called the normal and conormal sheaves of the subscheme $ Y $. There is also an exact sequence of $ {\mathcal O} _ {Y} $- modules
$$ \tag{* } {\mathcal N} _ {Y/X} ^ {*} \mathop \rightarrow \limits ^ \delta \Omega _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ \Omega _ {Y} \rightarrow 0, $$
where $ \Omega _ {X} $ and $ \Omega _ {Y} $ are the sheaves of differentials on $ X $ and $ Y $. The sheaves $ {\mathcal N} _ {Y/X} ^ {*} $ and $ {\mathcal N} _ {Y/X} $ are quasi-coherent, and if $ X $ is a Noetherian scheme, then they are coherent. If $ X $ is a non-singular variety over $ k $ and $ Y $ is a non-singular variety, then $ {\mathcal N} _ {Y/X} ^ {*} $ is locally free and the homomorphism $ \delta $ in (*) is injective. In this case one obtains the dual exact sequence
$$ 0 \rightarrow {\mathcal T} _ {Y} \rightarrow {\mathcal T} _ {X} \otimes {\mathcal O} _ {Y} \rightarrow \ {\mathcal N} _ {Y/X} \rightarrow 0, $$
so that the normal sheaf $ {\mathcal N} _ {Y/X} $ is locally free of rank $ r = \mathop{\rm codim} Y $ corresponding to the normal bundle over $ Y $. In particular, if $ r = 1 $, then $ {\mathcal N} _ {Y/X} $ is the invertible sheaf corresponding to the divisor $ Y $.
In terms of normal sheaves one can express the self-intersection $ Y \cdot Y $ of a non-singular subvariety $ Y \subset X $. Namely, $ Y \cdot Y = f _ {*} c _ {r} ( {\mathcal N} _ {Y/X} ) $, where $ c _ {r} $ is the $ r $- th Chern class and $ f _ {*} : A ( Y) \rightarrow A ( X) $ is the homomorphism of Chow rings (cf. Chow ring) corresponding to the imbedding $ f: Y \rightarrow X $.
3) $ ( X, {\mathcal O} _ {X} ) $ is a complex space, $ ( Y, {\mathcal O} _ {Y} ) $ is a closed analytic subspace of it and $ f $ is the imbedding. Then $ {\mathcal N} _ {Y/X} $ and $ {\mathcal N} _ {Y/X} ^ {*} $ are called the normal and conormal sheaves of the subspace $ Y $; they are coherent. If $ X $ is an analytic manifold and $ Y $ an analytic submanifold of it, then $ {\mathcal N} _ {Y/X} $ is the sheaf of germs of holomorphic sections of the normal bundle over $ Y $.
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[2] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
Comments
If $ X $ is a non-singular variety over $ k $ and $ Y $ is a subscheme of $ X $ that is locally a complete intersection, then $ {\mathcal N} _ {Y/X} ^ {*} $ is locally free.
Normal sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_sheaf&oldid=48018