Namespaces
Variants
Actions

Difference between revisions of "Non-holonomic systems"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
n0670501.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/N067/N.0607050 Non\AAhholonomic systems
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Systems of material points that are subject to constraints among which are kinematic constraints that impose conditions on the velocities (and not only the positions) of the points of the system in its possible positions (see [[Holonomic system|Holonomic system]]); these conditions are assumed to be expressible as non-integrable differential relations
 
Systems of material points that are subject to constraints among which are kinematic constraints that impose conditions on the velocities (and not only the positions) of the points of the system in its possible positions (see [[Holonomic system|Holonomic system]]); these conditions are assumed to be expressible as non-integrable differential relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670501.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\phi _ {s} ( x _ {1} \dots x _ {3N} ,\
 +
\dot{x} _ {1} \dots \dot{x} _ {3N} , t) =  0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670502.png" /></td> </tr></table>
+
$$
 +
= 1 \dots m,\  \phi _ {s} ( x, \dot{x} , t)  \in  C  ^ {1} ,
 +
$$
  
that cannot be replaced by equivalent finite relationships among the coordinates. Here, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670503.png" /> denote the Cartesian coordinates of the points, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670504.png" /> is the time and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670505.png" /> is the number of points in the system. Most often one considers constraints (1) that are linear in the velocities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670506.png" />, of the form
+
that cannot be replaced by equivalent finite relationships among the coordinates. Here, the $  x _  \nu  $
 +
denote the Cartesian coordinates of the points, $  t $
 +
is the time and $  N $
 +
is the number of points in the system. Most often one considers constraints (1) that are linear in the velocities $  \dot{x} _ {i} $,  
 +
of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670507.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { 3N }
 +
A _ {s _ {i}  }  dx _ {i} + A _ {s}  dt  = 0; \ \
 +
A _ {s _ {i}  } ( x, t),\
 +
A _ {s} ( x, t)  \in  C  ^ {1} .
 +
$$
  
The constraints (1) are said to be stationary if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670508.png" />. These constraints also impose conditions on the accelerations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n0670509.png" /> of the points:
+
The constraints (1) are said to be stationary if $  \partial  \phi / \partial  t \equiv 0 $.  
 +
These constraints also impose conditions on the accelerations $  w _  \nu  $
 +
of the points:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705010.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{\partial  \phi _ {s} }{\partial  t }
 +
  = \
 +
\sum _ {\nu = 1 } ^ { N }
 +
\mathop{\rm grad} _ {\dot{r} _  \nu  } \
 +
\phi _ {s} \cdot w _  \nu  + \dots = 0.
 +
$$
  
 
Following N.G. Chetaev [[#References|[2]]], assume that the possible motions of the systems subject to the non-linear constraints (1) satisfy conditions of the type
 
Following N.G. Chetaev [[#References|[2]]], assume that the possible motions of the systems subject to the non-linear constraints (1) satisfy conditions of the type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\sum _ {\nu = 1 } ^ { 3N }
 +
 
 +
\frac{\partial  \phi _ {s} }{\partial  \dot{x} _  \nu  }
 +
 
 +
\delta x _  \nu  = 0,\ \
 +
s = 1 \dots m.
 +
$$
  
 
In the case of linear constraints, these conditions imply the usual relations
 
In the case of linear constraints, these conditions imply the usual relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705012.png" /></td> </tr></table>
+
$$
 +
\sum _ {i = 1 } ^ { 3N }
 +
A _ {s _ {i}  }
 +
\delta x _ {i}  = 0.
 +
$$
  
 
Unlike the situation in holonomic systems, motion between neighbouring positions at an infinitesimally-small distance from one another may be impossible in a non-holonomic system (see [[#References|[1]]]).
 
Unlike the situation in holonomic systems, motion between neighbouring positions at an infinitesimally-small distance from one another may be impossible in a non-holonomic system (see [[#References|[1]]]).
Line 25: Line 71:
 
In generalized Lagrange coordinates, equations (1) and (2) are written as
 
In generalized Lagrange coordinates, equations (1) and (2) are written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705013.png" /></td> </tr></table>
+
$$
 +
\Phi _ {s} ( q _ {1} \dots q _ {n} ,\
 +
\dot{q} _ {1} \dots \dot{q} _ {n} , t)  = 0,\ \
 +
\sum _ {i = 1 } ^ { n }
 +
 
 +
\frac{\partial  \Phi _ {s} }{\partial  \dot{q} _ {i} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705014.png" /></td> </tr></table>
+
\delta q _ {i}  = 0,
 +
$$
  
In a non-holonomic system, the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705015.png" /> of degrees of freedom is less than the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705016.png" /> of independent coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705017.png" /> by the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067050/n06705018.png" /> of non-integrable constraint equations.
+
$$
 +
s  =  1 \dots m.
 +
$$
 +
 
 +
In a non-holonomic system, the number n - m $
 +
of degrees of freedom is less than the number n $
 +
of independent coordinates $  q _ {i} $
 +
by the number $  m $
 +
of non-integrable constraint equations.
  
 
Many and varied forms of differential equations of motion have been derived for non-holonomic systems, such as the Lagrange equation of the first kind (cf. [[Lagrange equations (in mechanics)|Lagrange equations (in mechanics)]]), the [[Appell equations|Appell equations]] in Lagrange coordinates and quasi-coordinates, the Chaplygin–Voronets equations in Lagrange coordinates, the [[Boltzmann equation|Boltzmann equation]], the Hamel equation in quasi-coordinates, etc. (see [[#References|[3]]]).
 
Many and varied forms of differential equations of motion have been derived for non-holonomic systems, such as the Lagrange equation of the first kind (cf. [[Lagrange equations (in mechanics)|Lagrange equations (in mechanics)]]), the [[Appell equations|Appell equations]] in Lagrange coordinates and quasi-coordinates, the Chaplygin–Voronets equations in Lagrange coordinates, the [[Boltzmann equation|Boltzmann equation]], the Hamel equation in quasi-coordinates, etc. (see [[#References|[3]]]).
Line 37: Line 97:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Hertz,  "The principles of mechanics presented in a new form" , Dover  (1956)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.G. Chetaev,  ''Izv. Fiz.-Mat. Obshch. Kazan. Univ. (3)'' , '''6'''  (1932)  pp. 68–71</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.I. Neimark,  N.A. Fufaev,  "Dynamics of nonholonomic systems" , Amer. Math. Soc.  (1972)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Hertz,  "The principles of mechanics presented in a new form" , Dover  (1956)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.G. Chetaev,  ''Izv. Fiz.-Mat. Obshch. Kazan. Univ. (3)'' , '''6'''  (1932)  pp. 68–71</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  Yu.I. Neimark,  N.A. Fufaev,  "Dynamics of nonholonomic systems" , Amer. Math. Soc.  (1972)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Course of theoretical physics" , '''1. Mechanics''' , Pergamon  (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.G.G. Sudarshan,  "Classical dynamics: a modern perspective" , Wiley (Interscience)  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshitz,  "Course of theoretical physics" , '''1. Mechanics''' , Pergamon  (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.G.G. Sudarshan,  "Classical dynamics: a modern perspective" , Wiley (Interscience)  (1974)</TD></TR></table>

Latest revision as of 08:03, 6 June 2020


Systems of material points that are subject to constraints among which are kinematic constraints that impose conditions on the velocities (and not only the positions) of the points of the system in its possible positions (see Holonomic system); these conditions are assumed to be expressible as non-integrable differential relations

$$ \tag{1 } \phi _ {s} ( x _ {1} \dots x _ {3N} ,\ \dot{x} _ {1} \dots \dot{x} _ {3N} , t) = 0, $$

$$ s = 1 \dots m,\ \phi _ {s} ( x, \dot{x} , t) \in C ^ {1} , $$

that cannot be replaced by equivalent finite relationships among the coordinates. Here, the $ x _ \nu $ denote the Cartesian coordinates of the points, $ t $ is the time and $ N $ is the number of points in the system. Most often one considers constraints (1) that are linear in the velocities $ \dot{x} _ {i} $, of the form

$$ \sum _ {i = 1 } ^ { 3N } A _ {s _ {i} } dx _ {i} + A _ {s} dt = 0; \ \ A _ {s _ {i} } ( x, t),\ A _ {s} ( x, t) \in C ^ {1} . $$

The constraints (1) are said to be stationary if $ \partial \phi / \partial t \equiv 0 $. These constraints also impose conditions on the accelerations $ w _ \nu $ of the points:

$$ \frac{\partial \phi _ {s} }{\partial t } = \ \sum _ {\nu = 1 } ^ { N } \mathop{\rm grad} _ {\dot{r} _ \nu } \ \phi _ {s} \cdot w _ \nu + \dots = 0. $$

Following N.G. Chetaev [2], assume that the possible motions of the systems subject to the non-linear constraints (1) satisfy conditions of the type

$$ \tag{2 } \sum _ {\nu = 1 } ^ { 3N } \frac{\partial \phi _ {s} }{\partial \dot{x} _ \nu } \delta x _ \nu = 0,\ \ s = 1 \dots m. $$

In the case of linear constraints, these conditions imply the usual relations

$$ \sum _ {i = 1 } ^ { 3N } A _ {s _ {i} } \delta x _ {i} = 0. $$

Unlike the situation in holonomic systems, motion between neighbouring positions at an infinitesimally-small distance from one another may be impossible in a non-holonomic system (see [1]).

In generalized Lagrange coordinates, equations (1) and (2) are written as

$$ \Phi _ {s} ( q _ {1} \dots q _ {n} ,\ \dot{q} _ {1} \dots \dot{q} _ {n} , t) = 0,\ \ \sum _ {i = 1 } ^ { n } \frac{\partial \Phi _ {s} }{\partial \dot{q} _ {i} } \delta q _ {i} = 0, $$

$$ s = 1 \dots m. $$

In a non-holonomic system, the number $ n - m $ of degrees of freedom is less than the number $ n $ of independent coordinates $ q _ {i} $ by the number $ m $ of non-integrable constraint equations.

Many and varied forms of differential equations of motion have been derived for non-holonomic systems, such as the Lagrange equation of the first kind (cf. Lagrange equations (in mechanics)), the Appell equations in Lagrange coordinates and quasi-coordinates, the Chaplygin–Voronets equations in Lagrange coordinates, the Boltzmann equation, the Hamel equation in quasi-coordinates, etc. (see [3]).

A characteristic feature of non-holonomic systems is that, in the general case, their differential equations of motion include the constraint equations.

References

[1] H. Hertz, "The principles of mechanics presented in a new form" , Dover (1956) (Translated from German)
[2] N.G. Chetaev, Izv. Fiz.-Mat. Obshch. Kazan. Univ. (3) , 6 (1932) pp. 68–71
[3] Yu.I. Neimark, N.A. Fufaev, "Dynamics of nonholonomic systems" , Amer. Math. Soc. (1972) (Translated from Russian)

Comments

References

[a1] L.D. Landau, E.M. Lifshitz, "Course of theoretical physics" , 1. Mechanics , Pergamon (1976)
[a2] E.G.G. Sudarshan, "Classical dynamics: a modern perspective" , Wiley (Interscience) (1974)
How to Cite This Entry:
Non-holonomic systems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-holonomic_systems&oldid=47987
This article was adapted from an original article by V.V. Rumyantsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article