Difference between revisions of "Neumann series"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | n0664401.png | ||
+ | $#A+1 = 41 n = 0 | ||
+ | $#C+1 = 41 : ~/encyclopedia/old_files/data/N066/N.0606440 Neumann series | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A series of the form | A series of the form | ||
− | + | $$ | |
+ | \sum _ { n= } 0 ^ \infty | ||
+ | a _ {n} J _ {\nu + n } ( z) , | ||
+ | $$ | ||
− | where | + | where $ J _ {\nu + n } $ |
+ | is the Bessel function (cylinder function of the first kind, cf. [[Bessel functions|Bessel functions]]) and $ \nu $ | ||
+ | is a (real or complex) number. C.G. Neumann | ||
− | considered the special case when | + | considered the special case when $ \nu $ |
+ | is an integer. He showed that if $ f ( z) $ | ||
+ | is an analytic function in a closed disc with centre at the coordinate origin, $ z $ | ||
+ | is an interior point and $ C $ | ||
+ | denotes the boundary of the disc, then | ||
− | + | $$ | |
+ | f ( z) = \ | ||
+ | \sum _ { n= } 0 ^ \infty | ||
+ | a _ {n} J _ {n} ( z) , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | a _ {0} = f ( 0) ,\ \ | ||
+ | a _ {n} = | ||
+ | \frac{1}{\pi i } | ||
− | + | \int\limits _ { C } | |
+ | O _ {n} ( t) f ( t) dt | ||
+ | $$ | ||
− | + | and $ O _ {n} $ | |
+ | is a polynomial of degree $ n+ 1 $ | ||
+ | in $ 1 / t $: | ||
− | + | $$ | |
+ | O _ {0} ( t) = | ||
+ | \frac{1}{t} | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | O _ {n} ( t) = | ||
+ | \frac{1}{2 t ^ {n+} 1 } | ||
+ | \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \int\limits _ { 0 } ^ \infty e ^ {-} x [ ( x + \sqrt {x ^ {2} + t ^ {2} } ) ^ {n} | ||
+ | + ( x - \sqrt {x ^ {2} + t ^ {2} } ) ^ {n} ] dx ,\ n \geq 1 ; | ||
+ | $$ | ||
− | + | it is usually called the Neumann polynomial of order $ n $. | |
+ | (Neumann himself called it a Bessel function of second order. Nowadays this term is used to denote one of the solutions of the Bessel equation.) Examples of the representation of functions by means of a Neumann series: | ||
− | + | $$ | |
+ | \cos ( z \sin \phi ) = \ | ||
+ | J _ {0} ( z) + | ||
+ | 2 \sum _ { n= } 1 ^ \infty | ||
+ | J _ {2n} ( z) \cos 2 n \phi , | ||
+ | $$ | ||
− | + | $$ | |
+ | \sin ( z \sin \phi ) = 2 \sum _ { n= } 1 ^ \infty J _ {2n-} 1 ( z) \sin ( 2n - 1 ) \phi , | ||
+ | $$ | ||
− | + | $$ | |
+ | \left ( { | ||
+ | \frac{z}{2} | ||
+ | } \right ) ^ \mu = \sum _ { n= } 0 ^ \infty | ||
+ | \frac{( \mu + 2n ) \Gamma ( \mu + n ) }{n ! } | ||
+ | J _ {\mu + 2n } ( z) , | ||
+ | $$ | ||
+ | |||
+ | where $ \mu $ | ||
+ | is an arbitrary number not equal to a non-negative integer and $ \Gamma $ | ||
+ | is the [[Gamma-function|gamma-function]]. | ||
In the theory of Fredholm integral equations (cf. [[Fredholm equation|Fredholm equation]]) | In the theory of Fredholm integral equations (cf. [[Fredholm equation|Fredholm equation]]) | ||
− | + | $$ \tag{1 } | |
+ | \phi ( x) - \lambda \int\limits _ { a } ^ { b } | ||
+ | K ( x , s ) \phi ( s) ds = \ | ||
+ | f ( x) ,\ \ | ||
+ | x \in [ a , b ] , | ||
+ | $$ | ||
− | a Neumann series is defined as the expansion of the resolvent | + | a Neumann series is defined as the expansion of the resolvent $ R ( x , s ; \lambda ) $ |
+ | of the kernel $ K $: | ||
− | + | $$ \tag{2 } | |
+ | R ( x , s ; \lambda ) = \ | ||
+ | \sum _ { n= } 1 ^ \infty | ||
+ | \lambda ^ {n} K _ {n} ( x , s ) , | ||
+ | $$ | ||
− | where the | + | where the $ K _ {n} $ |
+ | are the iterated kernels (of $ K $), | ||
+ | which are defined by the recurrence formulas | ||
− | + | $$ | |
+ | K _ {1} ( x , s ) = K ( x , s ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | K _ {n} ( x , s ) = \int\limits _ { a } ^ { b } K _ {n-} 1 ( x , t ) K ( t , s ) dt ,\ n \geq 2 . | ||
+ | $$ | ||
− | By means of (2) the solution of (1) for small | + | By means of (2) the solution of (1) for small $ \lambda $ |
+ | can be represented by | ||
− | + | $$ \tag{3 } | |
+ | \phi ( x) = f ( x) + \sum _ { k= } 1 ^ \infty \lambda ^ {n} | ||
+ | \int\limits _ { a } ^ { b } K _ {n} ( x , s ) f ( s) ds . | ||
+ | $$ | ||
The last series is also called a Neumann series. In | The last series is also called a Neumann series. In | ||
Line 53: | Line 135: | ||
the series (3) is considered in the case of an equation (1) to which the Dirichlet problem in potential theory reduces. | the series (3) is considered in the case of an equation (1) to which the Dirichlet problem in potential theory reduces. | ||
− | Let | + | Let $ A $ |
+ | be a bounded linear operator mapping a Banach space $ X $ | ||
+ | into itself, with norm $ \| A \| < 1 $. | ||
+ | Then the operator $ I - A $, | ||
+ | where $ I $ | ||
+ | is the identity operator, has a unique bounded inverse $ ( I - A ) ^ {-} 1 $, | ||
+ | which admits the expansion | ||
− | + | $$ \tag{4 } | |
+ | ( I - A ) ^ {-} 1 = \ | ||
+ | \sum _ { n= } 0 ^ \infty A ^ {n} . | ||
+ | $$ | ||
In the theory of linear operators this series is called a Neumann series. The series | In the theory of linear operators this series is called a Neumann series. The series | ||
Line 63: | Line 154: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.G. Neumann, "Theorie der Besselschen Funktionen" , Teubner (1867)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.G. Neumann, "Untersuchungen über das logarithmische und Newtonsche Potential" , Teubner (1877)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1''' , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Kuz'min, "Bessel functions" , Moscow-Leningrad (1035) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1965)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F.G. Tricomi, "Integral equations" , Interscience (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.G. Neumann, "Theorie der Besselschen Funktionen" , Teubner (1867)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.G. Neumann, "Untersuchungen über das logarithmische und Newtonsche Potential" , Teubner (1877)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1''' , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Kuz'min, "Bessel functions" , Moscow-Leningrad (1035) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1965)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F.G. Tricomi, "Integral equations" , Interscience (1957)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The series (4), applied to a specific vector | + | The series (4), applied to a specific vector $ f $, |
+ | i.e. | ||
− | + | $$ \tag{a1 } | |
+ | \sum _ { n= } 0 ^ \infty A ^ {n} f | ||
+ | $$ | ||
− | may converge also if | + | may converge also if $ \| A \| \geq 1 $. |
+ | For necessary and sufficient conditions for convergence see [[#References|[a2]]] (or [[#References|[a3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Smithies, "Integral equations" , Cambridge Univ. Press (1970) pp. Chapt. II</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Suzuki, "On the convergence of Neumann series in Banach space" ''Math. Ann.'' , '''220''' (1976) pp. 143–146</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.W. Engl, "A successive-approximation method for solving equations of the second kind with arbitrary spectral radius" ''J. Integral Eq.'' , '''8''' (1985) pp. 239–247</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) pp. Chapt. 5</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Smithies, "Integral equations" , Cambridge Univ. Press (1970) pp. Chapt. II</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Suzuki, "On the convergence of Neumann series in Banach space" ''Math. Ann.'' , '''220''' (1976) pp. 143–146</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.W. Engl, "A successive-approximation method for solving equations of the second kind with arbitrary spectral radius" ''J. Integral Eq.'' , '''8''' (1985) pp. 239–247</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) pp. Chapt. 5</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) (Translated from Russian)</TD></TR></table> |
Revision as of 08:02, 6 June 2020
A series of the form
$$ \sum _ { n= } 0 ^ \infty a _ {n} J _ {\nu + n } ( z) , $$
where $ J _ {\nu + n } $ is the Bessel function (cylinder function of the first kind, cf. Bessel functions) and $ \nu $ is a (real or complex) number. C.G. Neumann
considered the special case when $ \nu $ is an integer. He showed that if $ f ( z) $ is an analytic function in a closed disc with centre at the coordinate origin, $ z $ is an interior point and $ C $ denotes the boundary of the disc, then
$$ f ( z) = \ \sum _ { n= } 0 ^ \infty a _ {n} J _ {n} ( z) , $$
where
$$ a _ {0} = f ( 0) ,\ \ a _ {n} = \frac{1}{\pi i } \int\limits _ { C } O _ {n} ( t) f ( t) dt $$
and $ O _ {n} $ is a polynomial of degree $ n+ 1 $ in $ 1 / t $:
$$ O _ {0} ( t) = \frac{1}{t} , $$
$$ O _ {n} ( t) = \frac{1}{2 t ^ {n+} 1 } \times $$
$$ \times \int\limits _ { 0 } ^ \infty e ^ {-} x [ ( x + \sqrt {x ^ {2} + t ^ {2} } ) ^ {n} + ( x - \sqrt {x ^ {2} + t ^ {2} } ) ^ {n} ] dx ,\ n \geq 1 ; $$
it is usually called the Neumann polynomial of order $ n $. (Neumann himself called it a Bessel function of second order. Nowadays this term is used to denote one of the solutions of the Bessel equation.) Examples of the representation of functions by means of a Neumann series:
$$ \cos ( z \sin \phi ) = \ J _ {0} ( z) + 2 \sum _ { n= } 1 ^ \infty J _ {2n} ( z) \cos 2 n \phi , $$
$$ \sin ( z \sin \phi ) = 2 \sum _ { n= } 1 ^ \infty J _ {2n-} 1 ( z) \sin ( 2n - 1 ) \phi , $$
$$ \left ( { \frac{z}{2} } \right ) ^ \mu = \sum _ { n= } 0 ^ \infty \frac{( \mu + 2n ) \Gamma ( \mu + n ) }{n ! } J _ {\mu + 2n } ( z) , $$
where $ \mu $ is an arbitrary number not equal to a non-negative integer and $ \Gamma $ is the gamma-function.
In the theory of Fredholm integral equations (cf. Fredholm equation)
$$ \tag{1 } \phi ( x) - \lambda \int\limits _ { a } ^ { b } K ( x , s ) \phi ( s) ds = \ f ( x) ,\ \ x \in [ a , b ] , $$
a Neumann series is defined as the expansion of the resolvent $ R ( x , s ; \lambda ) $ of the kernel $ K $:
$$ \tag{2 } R ( x , s ; \lambda ) = \ \sum _ { n= } 1 ^ \infty \lambda ^ {n} K _ {n} ( x , s ) , $$
where the $ K _ {n} $ are the iterated kernels (of $ K $), which are defined by the recurrence formulas
$$ K _ {1} ( x , s ) = K ( x , s ) , $$
$$ K _ {n} ( x , s ) = \int\limits _ { a } ^ { b } K _ {n-} 1 ( x , t ) K ( t , s ) dt ,\ n \geq 2 . $$
By means of (2) the solution of (1) for small $ \lambda $ can be represented by
$$ \tag{3 } \phi ( x) = f ( x) + \sum _ { k= } 1 ^ \infty \lambda ^ {n} \int\limits _ { a } ^ { b } K _ {n} ( x , s ) f ( s) ds . $$
The last series is also called a Neumann series. In
the series (3) is considered in the case of an equation (1) to which the Dirichlet problem in potential theory reduces.
Let $ A $ be a bounded linear operator mapping a Banach space $ X $ into itself, with norm $ \| A \| < 1 $. Then the operator $ I - A $, where $ I $ is the identity operator, has a unique bounded inverse $ ( I - A ) ^ {-} 1 $, which admits the expansion
$$ \tag{4 } ( I - A ) ^ {-} 1 = \ \sum _ { n= } 0 ^ \infty A ^ {n} . $$
In the theory of linear operators this series is called a Neumann series. The series
can be regarded as a special case of (4).
References
[1] | C.G. Neumann, "Theorie der Besselschen Funktionen" , Teubner (1867) |
[2] | C.G. Neumann, "Untersuchungen über das logarithmische und Newtonsche Potential" , Teubner (1877) |
[3] | G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952) |
[4] | R.O. Kuz'min, "Bessel functions" , Moscow-Leningrad (1035) (In Russian) |
[5] | K. Yosida, "Functional analysis" , Springer (1965) |
[6] | F.G. Tricomi, "Integral equations" , Interscience (1957) |
Comments
The series (4), applied to a specific vector $ f $, i.e.
$$ \tag{a1 } \sum _ { n= } 0 ^ \infty A ^ {n} f $$
may converge also if $ \| A \| \geq 1 $. For necessary and sufficient conditions for convergence see [a2] (or [a3]).
References
[a1] | F. Smithies, "Integral equations" , Cambridge Univ. Press (1970) pp. Chapt. II |
[a2] | N. Suzuki, "On the convergence of Neumann series in Banach space" Math. Ann. , 220 (1976) pp. 143–146 |
[a3] | H.W. Engl, "A successive-approximation method for solving equations of the second kind with arbitrary spectral radius" J. Integral Eq. , 8 (1985) pp. 239–247 |
[a4] | I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981) |
[a5] | A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) pp. Chapt. 5 |
[a6] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian) |
Neumann series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neumann_series&oldid=47960