Difference between revisions of "Natural sequence"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | n0661101.png | ||
+ | $#A+1 = 30 n = 0 | ||
+ | $#C+1 = 30 : ~/encyclopedia/old_files/data/N066/N.0606110 Natural sequence, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''natural number sequence'' | ''natural number sequence'' | ||
− | The non-empty set | + | The non-empty set $ \mathbf N = \{ 1 , 2 , . . . \} $ |
+ | in which a [[unary operation]] $ S $ | ||
+ | is defined (i.e. $ S $ | ||
+ | is a single-valued mapping of $ \mathbf N $ | ||
+ | into itself) satisfying the following conditions (the [[Peano axioms|Peano axioms]]): | ||
− | 1) for any | + | 1) for any $ a \in \mathbf N $, |
− | + | $$ | |
+ | 1 \neq Sa; | ||
+ | $$ | ||
− | 2) for any | + | 2) for any $ a, b \in \mathbf N $: |
+ | If | ||
− | + | $$ | |
+ | Sa = Sb, | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | a = b; | ||
+ | $$ | ||
− | 3) any subset of | + | 3) any subset of $ \mathbf N $ |
+ | that contains 1 and that together with any element $ a $ | ||
+ | also contains $ Sa $, | ||
+ | is necessarily the whole of $ \mathbf N $( | ||
+ | axiom of induction). | ||
− | The element | + | The element $ Sa $ |
+ | is usually called the immediate successor of $ a $. | ||
+ | The natural sequence is a [[Totally ordered set|totally ordered set]]. It can be proved that the conditions | ||
− | + | $$ | |
+ | a + 1 = Sa,\ \ | ||
+ | a + Sb = S ( a + b), | ||
+ | $$ | ||
− | + | $$ | |
+ | a \cdot 1 = a,\ a \cdot Sb = ab + a, | ||
+ | $$ | ||
− | where | + | where $ a $ |
+ | and $ b $ | ||
+ | are arbitrary elements of $ \mathbf N $, | ||
+ | define binary operations $ (+) $ | ||
+ | and $ ( \cdot ) $ | ||
+ | on $ \mathbf N $. | ||
+ | The system $ \langle \mathbf N, +, \cdot , 1 \rangle $ | ||
+ | is the system of natural numbers (cf. [[Natural number|Natural number]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1''' , Springer (1967) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.L. van der Waerden, "Algebra" , '''1''' , Springer (1967) (Translated from German)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Often, the natural number sequence is started at | + | Often, the natural number sequence is started at $ 0 $, |
+ | cf. also [[Natural number|Natural number]]. | ||
− | The system | + | The system $ ( \mathbf N , S ) $ |
+ | is the only (up to an isomorphism) system satisfying the Peano axioms. | ||
− | When saying that | + | When saying that $ ( \mathbf N , S ) $ |
+ | is a totally ordered set, one refers to the total order relation $ < $ | ||
+ | defined by: | ||
− | < | + | $$ |
+ | \neg ( a < 1 ) , | ||
+ | $$ | ||
− | < | + | $$ |
+ | a < S b \iff a < b \textrm{ or } a = b . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.C. Kennedy, "Selected works of Giuseppe Peano" , Allen & Unwin (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. MacLane, "Algebra" , Macmillan (1967)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H.C. Kennedy, "Selected works of Giuseppe Peano" , Allen & Unwin (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. MacLane, "Algebra" , Macmillan (1967)</TD></TR></table> |
Latest revision as of 08:02, 6 June 2020
natural number sequence
The non-empty set $ \mathbf N = \{ 1 , 2 , . . . \} $ in which a unary operation $ S $ is defined (i.e. $ S $ is a single-valued mapping of $ \mathbf N $ into itself) satisfying the following conditions (the Peano axioms):
1) for any $ a \in \mathbf N $,
$$ 1 \neq Sa; $$
2) for any $ a, b \in \mathbf N $: If
$$ Sa = Sb, $$
then
$$ a = b; $$
3) any subset of $ \mathbf N $ that contains 1 and that together with any element $ a $ also contains $ Sa $, is necessarily the whole of $ \mathbf N $( axiom of induction).
The element $ Sa $ is usually called the immediate successor of $ a $. The natural sequence is a totally ordered set. It can be proved that the conditions
$$ a + 1 = Sa,\ \ a + Sb = S ( a + b), $$
$$ a \cdot 1 = a,\ a \cdot Sb = ab + a, $$
where $ a $ and $ b $ are arbitrary elements of $ \mathbf N $, define binary operations $ (+) $ and $ ( \cdot ) $ on $ \mathbf N $. The system $ \langle \mathbf N, +, \cdot , 1 \rangle $ is the system of natural numbers (cf. Natural number).
References
[1] | B.L. van der Waerden, "Algebra" , 1 , Springer (1967) (Translated from German) |
Comments
Often, the natural number sequence is started at $ 0 $, cf. also Natural number.
The system $ ( \mathbf N , S ) $ is the only (up to an isomorphism) system satisfying the Peano axioms.
When saying that $ ( \mathbf N , S ) $ is a totally ordered set, one refers to the total order relation $ < $ defined by:
$$ \neg ( a < 1 ) , $$
$$ a < S b \iff a < b \textrm{ or } a = b . $$
References
[a1] | H.C. Kennedy, "Selected works of Giuseppe Peano" , Allen & Unwin (1973) |
[a2] | E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930) |
[a3] | S. MacLane, "Algebra" , Macmillan (1967) |
Natural sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_sequence&oldid=47949