|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653002.png" />-linear mapping, multilinear operator''
| + | <!-- |
| + | m0653002.png |
| + | $#A+1 = 61 n = 0 |
| + | $#C+1 = 61 : ~/encyclopedia/old_files/data/M065/M.0605300 Multilinear mapping, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653003.png" /> of the direct product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653004.png" /> of unitary modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653005.png" /> (cf. [[Unitary module|Unitary module]]) over a commutative associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653006.png" /> with a unit into a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653007.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653008.png" /> which is linear in each argument, i.e. which satisfies the condition
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m0653009.png" /></td> </tr></table>
| + | '' $ n $- |
| + | linear mapping, multilinear operator'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530010.png" /></td> </tr></table>
| + | A mapping $ f $ |
| + | of the direct product $ \prod _ {i=} 1 ^ {n} E _ {i} $ |
| + | of unitary modules $ E _ {i} $( |
| + | cf. [[Unitary module|Unitary module]]) over a commutative associative ring $ A $ |
| + | with a unit into a certain $ A $- |
| + | module $ F $ |
| + | which is linear in each argument, i.e. which satisfies the condition |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530011.png" /></td> </tr></table>
| + | $$ |
| + | f( x _ {1} \dots x _ {i-} 1 , ay + bz, x _ {i+} 1 \dots x _ {n} ) = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530012.png" /></td> </tr></table>
| + | $$ |
| + | = \ |
| + | af( x _ {1} \dots x _ {i-} 1 , y, x _ {i+} 1 \dots x _ {n} ) + |
| + | $$ |
| | | |
− | In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530013.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530014.png" />) one speaks of a [[Bilinear mapping|bilinear mapping]] (respectively, a trilinear mapping). Each multilinear mapping
| + | $$ |
| + | + |
| + | bf ( x _ {i} \dots x _ {i-} 1 , z , x _ {i+} 1 \dots x _ {n} ) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530015.png" /></td> </tr></table>
| + | $$ |
| + | ( a, b \in A; \ y, z \in E _ {i} ,\ i = 1 \dots n). |
| + | $$ |
| | | |
− | defines a unique linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530016.png" /> of the tensor product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530017.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530018.png" /> such that
| + | In the case $ n= 2 $( |
| + | $ n= 3 $) |
| + | one speaks of a [[Bilinear mapping|bilinear mapping]] (respectively, a trilinear mapping). Each multilinear mapping |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530019.png" /></td> </tr></table>
| + | $$ |
| + | f: \prod _ { i= } 1 ^ { n } E _ {i} \rightarrow F |
| + | $$ |
| | | |
− | where the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530020.png" /> is a bijection of the set of multilinear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530021.png" /> into the set of all linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530022.png" />. The multilinear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530023.png" /> naturally form an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530024.png" />-module.
| + | defines a unique linear mapping $ \overline{f}\; $ |
| + | of the tensor product $ \otimes _ {i=} 1 ^ {n} E _ {i} $ |
| + | into $ F $ |
| + | such that |
| | | |
− | On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530025.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530026.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530027.png" />-linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530028.png" /> there acts the [[Symmetric group|symmetric group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530029.png" />:
| + | $$ |
| + | \overline{f}\; ( x _ {1} \otimes \dots \otimes x _ {n} ) = \ |
| + | f( x _ {1} \dots x _ {n} ),\ x _ {i} \in E _ {i} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530030.png" /></td> </tr></table>
| + | where the correspondence $ f \mapsto \overline{f}\; $ |
| + | is a bijection of the set of multilinear mappings $ \prod _ {i=} 1 ^ {n} E _ {i} \rightarrow F $ |
| + | into the set of all linear mappings $ \otimes _ {i=} 1 ^ {n} E _ {i} \rightarrow F $. |
| + | The multilinear mappings $ \prod _ {i=} 1 ^ {n} E _ {i} \rightarrow F $ |
| + | naturally form an $ A $- |
| + | module. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530033.png" />. A multilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530034.png" /> is called symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530035.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530036.png" />, and skew-symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530038.png" /> in accordance with the sign of the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530039.png" />. A multilinear mapping is called sign-varying (or alternating) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530040.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530041.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530042.png" />. Any alternating multilinear mapping is skew-symmetric, while if in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530043.png" /> the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530044.png" /> has the unique solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530045.png" /> the converse also holds. The symmetric multilinear mappings form a submodule in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530046.png" /> that is naturally isomorphic to the module of linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530047.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530048.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530049.png" />-th symmetric power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530050.png" /> (see [[Symmetric algebra|Symmetric algebra]]). The alternating multilinear mappings form a submodule that is naturally isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530051.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530052.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530053.png" />-th exterior power of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530054.png" /> (see [[Exterior algebra|Exterior algebra]]). The multilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530055.png" /> is called the symmetrized multilinear mapping defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530056.png" />, while the multilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530057.png" /> is called the skew-symmetrized mapping defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530058.png" />. Symmetrized (skew-symmetrized) multilinear mappings are symmetric (respectively, alternating), and if in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530059.png" /> the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530060.png" /> has a unique solution for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530061.png" />, then the converse is true. A sufficient condition for any alternating multilinear mapping to be a skew-symmetrization is that the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065300/m06530062.png" /> is free (cf. [[Free module|Free module]]). For references see [[Multilinear form|Multilinear form]]. | + | On the $ A $- |
| + | module $ L _ {n} ( E, F ) $ |
| + | of all $ n $- |
| + | linear mappings $ E ^ {n} \rightarrow F $ |
| + | there acts the [[Symmetric group|symmetric group]] $ S _ {n} $: |
| + | |
| + | $$ |
| + | ( sf )( x _ {1} \dots x _ {n} ) = \ |
| + | f( x _ {s(} 1) \dots x _ {s(} n) ), |
| + | $$ |
| + | |
| + | where $ s \in S _ {n} $, |
| + | $ f \in L _ {n} ( E, F ) $, |
| + | $ x _ {i} \in E $. |
| + | A multilinear mapping $ f $ |
| + | is called symmetric if $ sf = f $ |
| + | for all $ s \in S _ {n} $, |
| + | and skew-symmetric if $ sf = \epsilon ( s) f $, |
| + | where $ \epsilon ( s) = \pm 1 $ |
| + | in accordance with the sign of the permutation $ s $. |
| + | A multilinear mapping is called sign-varying (or alternating) if $ f( x _ {1} \dots x _ {n} ) = 0 $ |
| + | when $ x _ {i} = x _ {j} $ |
| + | for some $ i \neq j $. |
| + | Any alternating multilinear mapping is skew-symmetric, while if in $ F $ |
| + | the equation $ 2y = 0 $ |
| + | has the unique solution $ y = 0 $ |
| + | the converse also holds. The symmetric multilinear mappings form a submodule in $ L _ {n} ( E, F ) $ |
| + | that is naturally isomorphic to the module of linear mappings $ L( S ^ {n} E, F ) $, |
| + | where $ S ^ {n} E $ |
| + | is the $ n $- |
| + | th symmetric power of $ E $( |
| + | see [[Symmetric algebra|Symmetric algebra]]). The alternating multilinear mappings form a submodule that is naturally isomorphic to $ L( \Lambda ^ {n} E, F ) $, |
| + | where $ \Lambda ^ {n} E $ |
| + | is the $ n $- |
| + | th exterior power of the module $ E $( |
| + | see [[Exterior algebra|Exterior algebra]]). The multilinear mapping $ \alpha _ {n} f = \sum _ {s \in S _ {n} } sf $ |
| + | is called the symmetrized multilinear mapping defined by $ f $, |
| + | while the multilinear mapping $ \sigma _ {n} f = \sum _ {s \in S _ {n} } \epsilon ( s) sf $ |
| + | is called the skew-symmetrized mapping defined by $ f $. |
| + | Symmetrized (skew-symmetrized) multilinear mappings are symmetric (respectively, alternating), and if in $ F $ |
| + | the equation $ n!y = c $ |
| + | has a unique solution for each $ c \in F $, |
| + | then the converse is true. A sufficient condition for any alternating multilinear mapping to be a skew-symmetrization is that the module $ E $ |
| + | is free (cf. [[Free module|Free module]]). For references see [[Multilinear form|Multilinear form]]. |
$ n $-
linear mapping, multilinear operator
A mapping $ f $
of the direct product $ \prod _ {i=} 1 ^ {n} E _ {i} $
of unitary modules $ E _ {i} $(
cf. Unitary module) over a commutative associative ring $ A $
with a unit into a certain $ A $-
module $ F $
which is linear in each argument, i.e. which satisfies the condition
$$
f( x _ {1} \dots x _ {i-} 1 , ay + bz, x _ {i+} 1 \dots x _ {n} ) =
$$
$$
= \
af( x _ {1} \dots x _ {i-} 1 , y, x _ {i+} 1 \dots x _ {n} ) +
$$
$$
+
bf ( x _ {i} \dots x _ {i-} 1 , z , x _ {i+} 1 \dots x _ {n} )
$$
$$
( a, b \in A; \ y, z \in E _ {i} ,\ i = 1 \dots n).
$$
In the case $ n= 2 $(
$ n= 3 $)
one speaks of a bilinear mapping (respectively, a trilinear mapping). Each multilinear mapping
$$
f: \prod _ { i= } 1 ^ { n } E _ {i} \rightarrow F
$$
defines a unique linear mapping $ \overline{f}\; $
of the tensor product $ \otimes _ {i=} 1 ^ {n} E _ {i} $
into $ F $
such that
$$
\overline{f}\; ( x _ {1} \otimes \dots \otimes x _ {n} ) = \
f( x _ {1} \dots x _ {n} ),\ x _ {i} \in E _ {i} ,
$$
where the correspondence $ f \mapsto \overline{f}\; $
is a bijection of the set of multilinear mappings $ \prod _ {i=} 1 ^ {n} E _ {i} \rightarrow F $
into the set of all linear mappings $ \otimes _ {i=} 1 ^ {n} E _ {i} \rightarrow F $.
The multilinear mappings $ \prod _ {i=} 1 ^ {n} E _ {i} \rightarrow F $
naturally form an $ A $-
module.
On the $ A $-
module $ L _ {n} ( E, F ) $
of all $ n $-
linear mappings $ E ^ {n} \rightarrow F $
there acts the symmetric group $ S _ {n} $:
$$
( sf )( x _ {1} \dots x _ {n} ) = \
f( x _ {s(} 1) \dots x _ {s(} n) ),
$$
where $ s \in S _ {n} $,
$ f \in L _ {n} ( E, F ) $,
$ x _ {i} \in E $.
A multilinear mapping $ f $
is called symmetric if $ sf = f $
for all $ s \in S _ {n} $,
and skew-symmetric if $ sf = \epsilon ( s) f $,
where $ \epsilon ( s) = \pm 1 $
in accordance with the sign of the permutation $ s $.
A multilinear mapping is called sign-varying (or alternating) if $ f( x _ {1} \dots x _ {n} ) = 0 $
when $ x _ {i} = x _ {j} $
for some $ i \neq j $.
Any alternating multilinear mapping is skew-symmetric, while if in $ F $
the equation $ 2y = 0 $
has the unique solution $ y = 0 $
the converse also holds. The symmetric multilinear mappings form a submodule in $ L _ {n} ( E, F ) $
that is naturally isomorphic to the module of linear mappings $ L( S ^ {n} E, F ) $,
where $ S ^ {n} E $
is the $ n $-
th symmetric power of $ E $(
see Symmetric algebra). The alternating multilinear mappings form a submodule that is naturally isomorphic to $ L( \Lambda ^ {n} E, F ) $,
where $ \Lambda ^ {n} E $
is the $ n $-
th exterior power of the module $ E $(
see Exterior algebra). The multilinear mapping $ \alpha _ {n} f = \sum _ {s \in S _ {n} } sf $
is called the symmetrized multilinear mapping defined by $ f $,
while the multilinear mapping $ \sigma _ {n} f = \sum _ {s \in S _ {n} } \epsilon ( s) sf $
is called the skew-symmetrized mapping defined by $ f $.
Symmetrized (skew-symmetrized) multilinear mappings are symmetric (respectively, alternating), and if in $ F $
the equation $ n!y = c $
has a unique solution for each $ c \in F $,
then the converse is true. A sufficient condition for any alternating multilinear mapping to be a skew-symmetrization is that the module $ E $
is free (cf. Free module). For references see Multilinear form.