Namespaces
Variants
Actions

Difference between revisions of "Monotone function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(related concepts)
m (tex encoded by computer)
 
Line 1: Line 1:
A function of one variable, defined on a subset of the real numbers, whose increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648301.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648302.png" />, does not change sign, that is, is either always negative or always positive. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648303.png" /> is strictly greater (less) than zero when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648304.png" />, then the function is called strictly monotone (see [[Increasing function|Increasing function]]; [[Decreasing function|Decreasing function]]). The various types of monotone functions are represented in the following table.
+
<!--
 +
m0648301.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/M064/M.0604830 Monotone function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648305.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Increasing (non-decreasing)</td> <td colname="3" style="background-color:white;" colspan="1">
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A function of one variable, defined on a subset of the real numbers, whose increment  $  \Delta f ( x) = f ( x  ^  \prime  ) - f ( x) $,
 +
for  $  \Delta x = x  ^  \prime  - x > 0 $,
 +
does not change sign, that is, is either always negative or always positive. If  $  \Delta f ( x) $
 +
is strictly greater (less) than zero when  $  \Delta x > 0 $,
 +
then the function is called strictly monotone (see [[Increasing function|Increasing function]]; [[Decreasing function|Decreasing function]]). The various types of monotone functions are represented in the following table.
 +
 
 +
<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) \geq  0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Increasing (non-decreasing)</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
  
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648306.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Decreasing (non-increasing)</td> <td colname="3" style="background-color:white;" colspan="1">
+
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) \leq  0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Decreasing (non-increasing)</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
  
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648307.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Strictly increasing</td> <td colname="3" style="background-color:white;" colspan="1">
+
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) > 0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Strictly increasing</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
  
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648308.png" /></td> <td colname="2" style="background-color:white;" colspan="1">Strictly decreasing</td> <td colname="3" style="background-color:white;" colspan="1">
+
</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1"> $  \Delta f ( x) < 0 $
 +
</td> <td colname="2" style="background-color:white;" colspan="1">Strictly decreasing</td> <td colname="3" style="background-color:white;" colspan="1">
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/" />
Line 21: Line 41:
 
</td></tr> </table>
 
</td></tr> </table>
  
If at each point of an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m0648309.png" /> has a derivative that does not change sign (respectively, is of constant sign), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483010.png" /> is monotone (strictly monotone) on this interval.
+
If at each point of an interval $  f $
 +
has a derivative that does not change sign (respectively, is of constant sign), then $  f $
 +
is monotone (strictly monotone) on this interval.
  
The idea of a monotone function can be generalized to functions of various classes. For example, a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483011.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483012.png" /> is called monotone if the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483013.png" /> implies that everywhere either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483014.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483015.png" /> everywhere. A monotone function in the [[Algebra of logic|algebra of logic]] is defined similarly.
+
The idea of a monotone function can be generalized to functions of various classes. For example, a function $  f ( x _ {1} \dots x _ {n} ) $
 +
defined on $  \mathbf R  ^ {n} $
 +
is called monotone if the condition $  x _ {1} \leq  x _ {1}  ^  \prime  \dots x _ {n} \leq  x _ {n}  ^  \prime  $
 +
implies that everywhere either $  f ( x _ {1} \dots x _ {n} ) \leq  f ( x _ {1}  ^  \prime  \dots x _ {n}  ^  \prime  ) $
 +
or $  f ( x _ {1} \dots x _ {n} ) \geq  f ( x _ {1}  ^  \prime  \dots x _ {n}  ^  \prime  ) $
 +
everywhere. A monotone function in the [[Algebra of logic|algebra of logic]] is defined similarly.
  
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483016.png" /> be defined on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483017.png" />-dimensional closed cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483018.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483019.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483020.png" /> be a [[Level set|level set]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483021.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483022.png" /> is called increasing (respectively, decreasing) at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483023.png" /> if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483024.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483025.png" /> not separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483026.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483027.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483028.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483029.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483030.png" />) holds, and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483031.png" /> that is separated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483032.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483033.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483034.png" />, the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483035.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064830/m06483036.png" />) holds. A function that is increasing or decreasing at some point is called monotone at that point.
+
A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let $  f $
 +
be defined on the $  n $-
 +
dimensional closed cube $  Q  ^ {n} $,  
 +
let $  x _ {0} \in Q  ^ {n} $
 +
and let $  E _ {t} = \{ {x } : {f ( x) = t,  x \in Q  ^ {n} } \} $
 +
be a [[Level set|level set]] of $  f $.  
 +
The function $  f $
 +
is called increasing (respectively, decreasing) at $  x _ {0} $
 +
if for any $  t $
 +
and any $  x  ^  \prime  \in Q  ^ {n} \setminus  E _ {t} $
 +
not separated in $  Q  ^ {n} $
 +
by $  E _ {t} $
 +
from $  x _ {0} $,  
 +
the relation $  f ( x  ^  \prime  ) < t $(
 +
respectively, $  f ( x  ^  \prime  ) > t $)  
 +
holds, and for any $  x  ^ {\prime\prime} \in Q  ^ {n} \setminus  E _ {t} $
 +
that is separated in $  Q  ^ {n} $
 +
by $  E _ {t} $
 +
from $  x _ {0} $,  
 +
the relation $  f ( x  ^ {\prime\prime} ) > t $(
 +
respectively, $  f ( x  ^ {\prime\prime} ) < t $)  
 +
holds. A function that is increasing or decreasing at some point is called monotone at that point.
  
 
====Comments====
 
====Comments====
 
For the concept in [[non-linear functional analysis]], see [[Monotone operator]].  For the concept in general [[partially ordered set]]s, see [[Monotone mapping]].
 
For the concept in [[non-linear functional analysis]], see [[Monotone operator]].  For the concept in general [[partially ordered set]]s, see [[Monotone mapping]].

Latest revision as of 08:01, 6 June 2020


A function of one variable, defined on a subset of the real numbers, whose increment $ \Delta f ( x) = f ( x ^ \prime ) - f ( x) $, for $ \Delta x = x ^ \prime - x > 0 $, does not change sign, that is, is either always negative or always positive. If $ \Delta f ( x) $ is strictly greater (less) than zero when $ \Delta x > 0 $, then the function is called strictly monotone (see Increasing function; Decreasing function). The various types of monotone functions are represented in the following table.

<tbody> </tbody>
$ \Delta f ( x) \geq 0 $ Increasing (non-decreasing)

$ \Delta f ( x) \leq 0 $ Decreasing (non-increasing)

$ \Delta f ( x) > 0 $ Strictly increasing

$ \Delta f ( x) < 0 $ Strictly decreasing

If at each point of an interval $ f $ has a derivative that does not change sign (respectively, is of constant sign), then $ f $ is monotone (strictly monotone) on this interval.

The idea of a monotone function can be generalized to functions of various classes. For example, a function $ f ( x _ {1} \dots x _ {n} ) $ defined on $ \mathbf R ^ {n} $ is called monotone if the condition $ x _ {1} \leq x _ {1} ^ \prime \dots x _ {n} \leq x _ {n} ^ \prime $ implies that everywhere either $ f ( x _ {1} \dots x _ {n} ) \leq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) $ or $ f ( x _ {1} \dots x _ {n} ) \geq f ( x _ {1} ^ \prime \dots x _ {n} ^ \prime ) $ everywhere. A monotone function in the algebra of logic is defined similarly.

A monotone function of many variables, increasing or decreasing at some point, is defined as follows. Let $ f $ be defined on the $ n $- dimensional closed cube $ Q ^ {n} $, let $ x _ {0} \in Q ^ {n} $ and let $ E _ {t} = \{ {x } : {f ( x) = t, x \in Q ^ {n} } \} $ be a level set of $ f $. The function $ f $ is called increasing (respectively, decreasing) at $ x _ {0} $ if for any $ t $ and any $ x ^ \prime \in Q ^ {n} \setminus E _ {t} $ not separated in $ Q ^ {n} $ by $ E _ {t} $ from $ x _ {0} $, the relation $ f ( x ^ \prime ) < t $( respectively, $ f ( x ^ \prime ) > t $) holds, and for any $ x ^ {\prime\prime} \in Q ^ {n} \setminus E _ {t} $ that is separated in $ Q ^ {n} $ by $ E _ {t} $ from $ x _ {0} $, the relation $ f ( x ^ {\prime\prime} ) > t $( respectively, $ f ( x ^ {\prime\prime} ) < t $) holds. A function that is increasing or decreasing at some point is called monotone at that point.

Comments

For the concept in non-linear functional analysis, see Monotone operator. For the concept in general partially ordered sets, see Monotone mapping.

How to Cite This Entry:
Monotone function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monotone_function&oldid=47894
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article