Difference between revisions of "Monomial substitutions, group of"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0647901.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/M064/M.0604790 Monomial substitutions, group of | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | ( | + | The subgroup of the group $ \mathop{\rm GL} ( m , \mathbf Z [ H ] ) $ |
+ | of all invertible matrices of order $ m $ | ||
+ | over the integral group ring $ \mathbf Z [ H ] $( | ||
+ | see [[Group algebra|Group algebra]]) of a group $ H $, | ||
+ | consisting of all matrices which precisely contain one non-zero element of $ H $ | ||
+ | in each row and column. Each such matrix, having a non-zero element $ h _ {ij} \in H $ | ||
+ | in place $ ( i , j ) $, | ||
+ | corresponds to a monomial substitution, that is, a mapping $ \psi : u _ {i} \rightarrow h _ {ij} u _ {j} $, | ||
+ | where $ j = j ( i ) $, | ||
+ | $ i = 1 \dots m $, | ||
+ | and $ u _ {i} \rightarrow u _ {j} $ | ||
+ | is a permutation of the finite set $ S = \{ u _ {1} \dots u _ {m} \} $. | ||
+ | The product of such mappings is given by the formula | ||
+ | |||
+ | $$ | ||
+ | \psi _ {1} \psi _ {2} : \ | ||
+ | u _ {i} \rightarrow ( h _ {ij} h _ {ik} ) u _ {k} $$ | ||
+ | |||
+ | ( $ \psi _ {1} : u _ {i} \rightarrow h _ {ij} u _ {j} $, | ||
+ | $ \psi _ {2} : u _ {j} \rightarrow h _ {ik} u _ {k} $), | ||
+ | and corresponds to the product of the matrices associated with $ \psi _ {1} $ | ||
+ | and $ \psi _ {2} $. | ||
+ | Any group $ G $ | ||
+ | containing $ H $ | ||
+ | as a subgroup of index $ m $ | ||
+ | can be isomorphically imbedded in a group of monomial substitutions. The group of monomial substitutions is isomorphic to the (unrestricted) [[Wreath product|wreath product]] of $ H $ | ||
+ | with the [[Symmetric group|symmetric group]] $ S ( m ) $ | ||
+ | of degree $ m $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Hall jr., "The theory of groups" , Macmillan (1959)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M. Hall jr., "The theory of groups" , Macmillan (1959)</TD></TR></table> |
Latest revision as of 08:01, 6 June 2020
The subgroup of the group $ \mathop{\rm GL} ( m , \mathbf Z [ H ] ) $
of all invertible matrices of order $ m $
over the integral group ring $ \mathbf Z [ H ] $(
see Group algebra) of a group $ H $,
consisting of all matrices which precisely contain one non-zero element of $ H $
in each row and column. Each such matrix, having a non-zero element $ h _ {ij} \in H $
in place $ ( i , j ) $,
corresponds to a monomial substitution, that is, a mapping $ \psi : u _ {i} \rightarrow h _ {ij} u _ {j} $,
where $ j = j ( i ) $,
$ i = 1 \dots m $,
and $ u _ {i} \rightarrow u _ {j} $
is a permutation of the finite set $ S = \{ u _ {1} \dots u _ {m} \} $.
The product of such mappings is given by the formula
$$ \psi _ {1} \psi _ {2} : \ u _ {i} \rightarrow ( h _ {ij} h _ {ik} ) u _ {k} $$
( $ \psi _ {1} : u _ {i} \rightarrow h _ {ij} u _ {j} $, $ \psi _ {2} : u _ {j} \rightarrow h _ {ik} u _ {k} $), and corresponds to the product of the matrices associated with $ \psi _ {1} $ and $ \psi _ {2} $. Any group $ G $ containing $ H $ as a subgroup of index $ m $ can be isomorphically imbedded in a group of monomial substitutions. The group of monomial substitutions is isomorphic to the (unrestricted) wreath product of $ H $ with the symmetric group $ S ( m ) $ of degree $ m $.
References
[1] | M.I. Kargapolov, J.I. [Yu.I. Merzlyakov] Merzljakov, "Fundamentals of the theory of groups" , Springer (1979) (Translated from Russian) |
[3] | M. Hall jr., "The theory of groups" , Macmillan (1959) |
Monomial substitutions, group of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Monomial_substitutions,_group_of&oldid=47892