Difference between revisions of "Mathieu equation"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0627501.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/M062/M.0602750 Mathieu equation | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The following ordinary differential equation with real coefficients: | The following ordinary differential equation with real coefficients: | ||
− | + | $$ | |
+ | |||
+ | \frac{d ^ {2} u }{dz ^ {2} } | ||
+ | + ( a + b \cos 2z) u = 0,\ \ | ||
+ | z \in \mathbf R . | ||
+ | $$ | ||
It was introduced by E. Mathieu [[#References|[1]]] in the investigation of the oscillations of an elliptic membrane; it is a particular case of a [[Hill equation|Hill equation]]. | It was introduced by E. Mathieu [[#References|[1]]] in the investigation of the oscillations of an elliptic membrane; it is a particular case of a [[Hill equation|Hill equation]]. | ||
Line 7: | Line 24: | ||
A [[Fundamental system of solutions|fundamental system of solutions]] of the Mathieu equation has the form | A [[Fundamental system of solutions|fundamental system of solutions]] of the Mathieu equation has the form | ||
− | + | $$ \tag{* } | |
+ | u _ {1} ( z) = e ^ {\alpha z } \phi ( z),\ \ | ||
+ | u _ {2} ( z) = u _ {1} (- z) , | ||
+ | $$ | ||
− | for | + | for $ \alpha \neq ni $, |
+ | $ n $ | ||
+ | an integer, where $ \phi ( z) $ | ||
+ | is a $ \pi $- | ||
+ | periodic function and the [[Lyapunov characteristic exponent|Lyapunov characteristic exponent]] $ \alpha $ | ||
+ | is either real or purely imaginary. For $ \mathop{\rm Im} \alpha = 0 $ | ||
+ | one of the solutions grows unboundedly, whereas the other tends to zero as $ z \rightarrow + \infty $( | ||
+ | instability zones in the plane of the parameters $ a , b $); | ||
+ | for $ \mathop{\rm Re} \alpha = 0 $ | ||
+ | these solutions are both bounded (stability zones). On the boundary of these zones (the case excluded in (*)) one of the functions of the fundamental system of solutions is either $ \pi $- | ||
+ | periodic or $ 2 \pi $- | ||
+ | periodic (the latter is called a Mathieu function, cf. [[Mathieu functions|Mathieu functions]]), while the second is obtained from the first through multiplication by $ z $. | ||
+ | The instability zones have the form of curvilinear triangles with vertices at the points $ a = n ^ {2} $, | ||
+ | $ b = 0 $, | ||
+ | $ n = 0, 1 ,\dots $( | ||
+ | see [[#References|[2]]], [[#References|[4]]]). | ||
The Mathieu equation is known also in a different form (see [[#References|[3]]]). | The Mathieu equation is known also in a different form (see [[#References|[3]]]). | ||
Line 15: | Line 50: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Mathieu, "Course de physique mathématique" , Paris (1873)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Yakubovich, V.M. Starzhinskii, "Linear differential equations with periodic coefficients and their applications" , '''1–2''' , Wiley (1975) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Mathieu, "Course de physique mathématique" , Paris (1873)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Yakubovich, V.M. Starzhinskii, "Linear differential equations with periodic coefficients and their applications" , '''1–2''' , Wiley (1975) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
The operator involved in the Mathieu equation is called a Mathieu operator. In various applications, especially in solid state theory, a discrete analogue, the discrete Mathieu operator, defined by | The operator involved in the Mathieu equation is called a Mathieu operator. In various applications, especially in solid state theory, a discrete analogue, the discrete Mathieu operator, defined by | ||
− | + | $$ | |
+ | ( M _ {A , \alpha , \nu } g ) ( n) = \ | ||
+ | g ( n + 1 ) + 2 A \cos ( 2 \pi n \alpha - | ||
+ | \nu ) g ( n) + g ( n - 1 ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | A , \alpha , \nu \in \mathbf R , | ||
+ | $$ | ||
− | is important. If | + | is important. If $ \alpha $ |
+ | is rational this is a periodic operator, otherwise it is almost periodic. Let $ \mathop{\rm Spec} ( A , \alpha , \nu ) $ | ||
+ | be the spectrum of $ M _ {A , \alpha , \nu } $ | ||
+ | on $ l _ {2} ( \mathbf Z ) $ | ||
+ | and let | ||
− | + | $$ | |
+ | \mathop{\rm Spec} ( A , \alpha ) = \cup _ \nu | ||
+ | \mathop{\rm Spec} ( A , \alpha , \nu ) . | ||
+ | $$ | ||
− | The spectrum | + | The spectrum $ \mathop{\rm Spec} ( 1 , \alpha ) $ |
+ | as a function of $ \alpha $ | ||
+ | gives a figure in the plane with remarkable combinatorial regularity and Cantor set like properties. It is known as Hofstadter's butterfly [[#References|[a1]]]. M. Kac conjectured (the Martini problem) that $ \mathop{\rm Spec} ( A , \alpha , \nu ) $ | ||
+ | is a Cantor set for all irrational $ \alpha $, | ||
+ | $ A \neq 0 $, | ||
+ | $ \nu \in \mathbf R $; | ||
+ | another conjecture states that the Lebesgue measure of $ \mathop{\rm Spec} ( 1 , \alpha ) $ | ||
+ | is zero for all irrational $ \alpha $. | ||
+ | For some detailed results on these spectra for rational $ \alpha $ | ||
+ | and a survey of this problem area cf. [[#References|[a2]]]. A selection of noteworthy papers on these matters as well as results for the continuous analogues is [[#References|[a3]]]–[[#References|[a5]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Hofstadter, "The energy levels of Bloch electrons in rational and irrational magnetic fields" ''Phys. Rev.'' , '''B14''' (1976) pp. 2239–2249</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.M.M. van Mouché, "Sur les régions interdites du spectre de l'opérateur périodique et discret de Mathieu" , Math. Inst. Univ. Utrecht (1988) (Thesis)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Bélissard, B. Simon, "Cantor spectrum for the almost Mathieu potential" ''J. Funct. Anal.'' , '''48''' (1982) pp. 408–419</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Bélissard, R. Lima, D. Testarel, "Almost periodic Schrödinger operators" L. Streit (ed.) , ''Mathematics and Physics, lectures on recent results'' , '''1''' , World Sci. (1985) pp. 1–64</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B. Simon, "Almost periodic Schrödinger operators, a review" ''Adv. Appl. Math.'' , '''3''' (1982) pp. 463–490</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Meixner, F.W. Schäfke, "Mathieu functions and spheroidal functions and their mathematical foundations: further studies" , Springer (1980)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Hofstadter, "The energy levels of Bloch electrons in rational and irrational magnetic fields" ''Phys. Rev.'' , '''B14''' (1976) pp. 2239–2249</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.M.M. van Mouché, "Sur les régions interdites du spectre de l'opérateur périodique et discret de Mathieu" , Math. Inst. Univ. Utrecht (1988) (Thesis)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J. Bélissard, B. Simon, "Cantor spectrum for the almost Mathieu potential" ''J. Funct. Anal.'' , '''48''' (1982) pp. 408–419</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Bélissard, R. Lima, D. Testarel, "Almost periodic Schrödinger operators" L. Streit (ed.) , ''Mathematics and Physics, lectures on recent results'' , '''1''' , World Sci. (1985) pp. 1–64</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> B. Simon, "Almost periodic Schrödinger operators, a review" ''Adv. Appl. Math.'' , '''3''' (1982) pp. 463–490</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Meixner, F.W. Schäfke, "Mathieu functions and spheroidal functions and their mathematical foundations: further studies" , Springer (1980)</TD></TR></table> |
Latest revision as of 07:59, 6 June 2020
The following ordinary differential equation with real coefficients:
$$ \frac{d ^ {2} u }{dz ^ {2} } + ( a + b \cos 2z) u = 0,\ \ z \in \mathbf R . $$
It was introduced by E. Mathieu [1] in the investigation of the oscillations of an elliptic membrane; it is a particular case of a Hill equation.
A fundamental system of solutions of the Mathieu equation has the form
$$ \tag{* } u _ {1} ( z) = e ^ {\alpha z } \phi ( z),\ \ u _ {2} ( z) = u _ {1} (- z) , $$
for $ \alpha \neq ni $, $ n $ an integer, where $ \phi ( z) $ is a $ \pi $- periodic function and the Lyapunov characteristic exponent $ \alpha $ is either real or purely imaginary. For $ \mathop{\rm Im} \alpha = 0 $ one of the solutions grows unboundedly, whereas the other tends to zero as $ z \rightarrow + \infty $( instability zones in the plane of the parameters $ a , b $); for $ \mathop{\rm Re} \alpha = 0 $ these solutions are both bounded (stability zones). On the boundary of these zones (the case excluded in (*)) one of the functions of the fundamental system of solutions is either $ \pi $- periodic or $ 2 \pi $- periodic (the latter is called a Mathieu function, cf. Mathieu functions), while the second is obtained from the first through multiplication by $ z $. The instability zones have the form of curvilinear triangles with vertices at the points $ a = n ^ {2} $, $ b = 0 $, $ n = 0, 1 ,\dots $( see [2], [4]).
The Mathieu equation is known also in a different form (see [3]).
References
[1] | E. Mathieu, "Course de physique mathématique" , Paris (1873) |
[2] | M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932) |
[3] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , Chelsea, reprint (1971) |
[4] | V.A. Yakubovich, V.M. Starzhinskii, "Linear differential equations with periodic coefficients and their applications" , 1–2 , Wiley (1975) (Translated from Russian) |
Comments
The operator involved in the Mathieu equation is called a Mathieu operator. In various applications, especially in solid state theory, a discrete analogue, the discrete Mathieu operator, defined by
$$ ( M _ {A , \alpha , \nu } g ) ( n) = \ g ( n + 1 ) + 2 A \cos ( 2 \pi n \alpha - \nu ) g ( n) + g ( n - 1 ) , $$
$$ A , \alpha , \nu \in \mathbf R , $$
is important. If $ \alpha $ is rational this is a periodic operator, otherwise it is almost periodic. Let $ \mathop{\rm Spec} ( A , \alpha , \nu ) $ be the spectrum of $ M _ {A , \alpha , \nu } $ on $ l _ {2} ( \mathbf Z ) $ and let
$$ \mathop{\rm Spec} ( A , \alpha ) = \cup _ \nu \mathop{\rm Spec} ( A , \alpha , \nu ) . $$
The spectrum $ \mathop{\rm Spec} ( 1 , \alpha ) $ as a function of $ \alpha $ gives a figure in the plane with remarkable combinatorial regularity and Cantor set like properties. It is known as Hofstadter's butterfly [a1]. M. Kac conjectured (the Martini problem) that $ \mathop{\rm Spec} ( A , \alpha , \nu ) $ is a Cantor set for all irrational $ \alpha $, $ A \neq 0 $, $ \nu \in \mathbf R $; another conjecture states that the Lebesgue measure of $ \mathop{\rm Spec} ( 1 , \alpha ) $ is zero for all irrational $ \alpha $. For some detailed results on these spectra for rational $ \alpha $ and a survey of this problem area cf. [a2]. A selection of noteworthy papers on these matters as well as results for the continuous analogues is [a3]–[a5].
References
[a1] | D. Hofstadter, "The energy levels of Bloch electrons in rational and irrational magnetic fields" Phys. Rev. , B14 (1976) pp. 2239–2249 |
[a2] | P.M.M. van Mouché, "Sur les régions interdites du spectre de l'opérateur périodique et discret de Mathieu" , Math. Inst. Univ. Utrecht (1988) (Thesis) |
[a3] | J. Bélissard, B. Simon, "Cantor spectrum for the almost Mathieu potential" J. Funct. Anal. , 48 (1982) pp. 408–419 |
[a4] | J. Bélissard, R. Lima, D. Testarel, "Almost periodic Schrödinger operators" L. Streit (ed.) , Mathematics and Physics, lectures on recent results , 1 , World Sci. (1985) pp. 1–64 |
[a5] | B. Simon, "Almost periodic Schrödinger operators, a review" Adv. Appl. Math. , 3 (1982) pp. 463–490 |
[a6] | J. Meixner, F.W. Schäfke, "Mathieu functions and spheroidal functions and their mathematical foundations: further studies" , Springer (1980) |
Mathieu equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mathieu_equation&oldid=47790