Difference between revisions of "Mass and co-mass"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0625902.png | ||
+ | $#A+1 = 62 n = 0 | ||
+ | $#C+1 = 62 : ~/encyclopedia/old_files/data/M062/M.0602590 Mass and co\AAhmass | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Adjoint norms (cf. [[Norm|Norm]]) in certain vector spaces dual to each other. | Adjoint norms (cf. [[Norm|Norm]]) in certain vector spaces dual to each other. | ||
− | 1) The mass of an | + | 1) The mass of an $ r $- |
+ | vector $ \alpha $, | ||
+ | i.e. an element of the $ r $- | ||
+ | fold exterior product of a vector space, is the number | ||
− | + | $$ | |
+ | | \alpha | _ {0} = \ | ||
+ | \inf \ | ||
+ | \left \{ {\sum _ { i } | \alpha _ {i} | } : {\alpha = \sum | ||
+ | {\alpha _ {i} } ,\ | ||
+ | \alpha _ {i} \ | ||
+ | \textrm{ simple } r \textrm{ - vectors } } \right \} | ||
+ | . | ||
+ | $$ | ||
− | The co-mass of an | + | The co-mass of an $ r $- |
+ | covector $ \omega $ | ||
+ | is the number | ||
− | + | $$ | |
+ | | \omega | _ {0} = \ | ||
+ | \sup _ \alpha | ||
+ | \{ {| \omega \cdot \alpha | } : { | ||
+ | \alpha \textrm{ a simple } r | ||
+ | \textrm{ - vector } , | \alpha | = 1 } \} | ||
+ | . | ||
+ | $$ | ||
− | Here | + | Here $ | \cdot | $ |
+ | is the standard norm of an $ r $- | ||
+ | vector and $ \omega \cdot \alpha $ | ||
+ | is the scalar product of a vector and a covector. | ||
− | The mass | + | The mass $ | \alpha | _ {0} $ |
+ | and the co-mass $ | \omega | _ {0} $ | ||
+ | are adjoint norms in the spaces of $ r $- | ||
+ | vectors $ V _ {[} r] $ | ||
+ | and $ r $- | ||
+ | covectors $ V ^ {[} r] $, | ||
+ | respectively. In this connection: | ||
− | a) | + | a) $ | \omega | _ {0} = \sup _ \alpha \{ {| \omega \cdot \alpha | } : {| \alpha | _ {0} = 1 } \} $, |
+ | $ | \alpha | _ {0} = \sup _ \alpha \{ {| \omega \cdot \alpha | } : {| \omega | _ {0} = 1 } \} $; | ||
− | b) | + | b) $ | \alpha | _ {0} \geq | \alpha | $, |
+ | $ | \omega | _ {0} \geq | \omega | $, | ||
+ | and equalities hold if and only if $ \alpha $( | ||
+ | $ \omega $) | ||
+ | is a simple $ r $-( | ||
+ | co)vector; | ||
− | c) | + | c) $ | \alpha \lor \beta | _ {0} \leq | \alpha | _ {0} | \beta | _ {0} $, |
+ | $ | \omega \lor \zeta | _ {0} \leq B | \omega | _ {0} | \zeta | _ {0} $ | ||
+ | for exterior products $ \lor $, | ||
+ | where for a simple multi-covector $ \omega $( | ||
+ | or $ \zeta $) | ||
+ | $ B = 1 $, | ||
+ | and, in general, $ B = ( _ {\ r } ^ {r+} s ) $ | ||
+ | if $ \omega \in V ^ {[} r] $ | ||
+ | and $ \zeta \in V ^ {[} s] $; | ||
− | d) | + | d) $ | \omega \wedge \alpha | _ {0} \leq \widetilde{B} | \omega | _ {0} | \alpha | _ {0} $ |
+ | for inner products $ \wedge $, | ||
+ | where $ \widetilde{B} = 1 $ | ||
+ | for $ r \geq s $ | ||
+ | and $ \widetilde{B} = ( _ {r} ^ {s} ) $ | ||
+ | for $ r \leq s $, | ||
+ | $ \omega \in V ^ {[} r] $ | ||
+ | and $ \alpha \in V _ {[} s] $. | ||
− | These definitions enable one to define the mass and co-mass for sections of fibre bundles whose standard fibres are | + | These definitions enable one to define the mass and co-mass for sections of fibre bundles whose standard fibres are $ V ^ {[} r] $ |
+ | and $ V _ {[} r] $. | ||
+ | For example, the co-mass of a form $ \omega $ | ||
+ | on a domain $ G \subset E ^ {n} $ | ||
+ | is | ||
− | + | $$ | |
+ | | \omega | _ {0} = \ | ||
+ | \sup \{ {| \omega ( p) | _ {0} } : {p \in G } \} | ||
+ | . | ||
+ | $$ | ||
− | 2) The mass of a polyhedral chain | + | 2) The mass of a polyhedral chain $ A = \sum {a _ {i} } \sigma _ {i} ^ {r} $ |
+ | is | ||
− | + | $$ | |
+ | | A | = \sum | a _ {i} | | \sigma _ {i} ^ {r} | , | ||
+ | $$ | ||
− | where | + | where $ | \sigma _ {i} ^ {r} | $ |
+ | is the volume of the cell $ \sigma _ {i} ^ {r} $. | ||
+ | For arbitrary chains the mass (finite or infinite) can be defined in various ways; for flat chains (see [[Flat norm|Flat norm]]) and sharp chains (see [[Sharp norm|Sharp norm]]) these give the same value to the mass. | ||
− | 3) The co-mass of a (flat, in particular, sharp) cochain | + | 3) The co-mass of a (flat, in particular, sharp) cochain $ X $ |
+ | is defined in the standard way: | ||
− | + | $$ | |
+ | | X | = \ | ||
+ | \sup _ {A \neq 0 } \ | ||
− | where | + | \frac{| X \cdot A | }{| A | } |
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ A $ | ||
+ | is a polyhedral chain and $ X \cdot A $ | ||
+ | is the value of the cochain $ X $ | ||
+ | on the chain $ A $. | ||
For references see [[Flat norm|Flat norm]]. | For references see [[Flat norm|Flat norm]]. | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A simple | + | A simple $ r $- |
+ | vector $ \alpha $ | ||
+ | is an element of the form $ \alpha = \beta _ {1} \lor \dots \lor \beta _ {r} $ | ||
+ | in the $ r $- | ||
+ | fold [[Exterior product|exterior product]] $ V _ {[} r] $ | ||
+ | of a [[Vector space|vector space]] $ V $. | ||
+ | Here "" denotes exterior product and $ \beta _ {1} \dots \beta _ {r} \in V $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Federer, "Geometric measure theory" , Springer (1969) pp. Sect. 1.8 {{MR|0257325}} {{ZBL|0176.00801}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Federer, "Geometric measure theory" , Springer (1969) pp. Sect. 1.8 {{MR|0257325}} {{ZBL|0176.00801}} </TD></TR></table> |
Latest revision as of 07:59, 6 June 2020
Adjoint norms (cf. Norm) in certain vector spaces dual to each other.
1) The mass of an $ r $- vector $ \alpha $, i.e. an element of the $ r $- fold exterior product of a vector space, is the number
$$ | \alpha | _ {0} = \ \inf \ \left \{ {\sum _ { i } | \alpha _ {i} | } : {\alpha = \sum {\alpha _ {i} } ,\ \alpha _ {i} \ \textrm{ simple } r \textrm{ - vectors } } \right \} . $$
The co-mass of an $ r $- covector $ \omega $ is the number
$$ | \omega | _ {0} = \ \sup _ \alpha \{ {| \omega \cdot \alpha | } : { \alpha \textrm{ a simple } r \textrm{ - vector } , | \alpha | = 1 } \} . $$
Here $ | \cdot | $ is the standard norm of an $ r $- vector and $ \omega \cdot \alpha $ is the scalar product of a vector and a covector.
The mass $ | \alpha | _ {0} $ and the co-mass $ | \omega | _ {0} $ are adjoint norms in the spaces of $ r $- vectors $ V _ {[} r] $ and $ r $- covectors $ V ^ {[} r] $, respectively. In this connection:
a) $ | \omega | _ {0} = \sup _ \alpha \{ {| \omega \cdot \alpha | } : {| \alpha | _ {0} = 1 } \} $, $ | \alpha | _ {0} = \sup _ \alpha \{ {| \omega \cdot \alpha | } : {| \omega | _ {0} = 1 } \} $;
b) $ | \alpha | _ {0} \geq | \alpha | $, $ | \omega | _ {0} \geq | \omega | $, and equalities hold if and only if $ \alpha $( $ \omega $) is a simple $ r $-( co)vector;
c) $ | \alpha \lor \beta | _ {0} \leq | \alpha | _ {0} | \beta | _ {0} $, $ | \omega \lor \zeta | _ {0} \leq B | \omega | _ {0} | \zeta | _ {0} $ for exterior products $ \lor $, where for a simple multi-covector $ \omega $( or $ \zeta $) $ B = 1 $, and, in general, $ B = ( _ {\ r } ^ {r+} s ) $ if $ \omega \in V ^ {[} r] $ and $ \zeta \in V ^ {[} s] $;
d) $ | \omega \wedge \alpha | _ {0} \leq \widetilde{B} | \omega | _ {0} | \alpha | _ {0} $ for inner products $ \wedge $, where $ \widetilde{B} = 1 $ for $ r \geq s $ and $ \widetilde{B} = ( _ {r} ^ {s} ) $ for $ r \leq s $, $ \omega \in V ^ {[} r] $ and $ \alpha \in V _ {[} s] $.
These definitions enable one to define the mass and co-mass for sections of fibre bundles whose standard fibres are $ V ^ {[} r] $ and $ V _ {[} r] $. For example, the co-mass of a form $ \omega $ on a domain $ G \subset E ^ {n} $ is
$$ | \omega | _ {0} = \ \sup \{ {| \omega ( p) | _ {0} } : {p \in G } \} . $$
2) The mass of a polyhedral chain $ A = \sum {a _ {i} } \sigma _ {i} ^ {r} $ is
$$ | A | = \sum | a _ {i} | | \sigma _ {i} ^ {r} | , $$
where $ | \sigma _ {i} ^ {r} | $ is the volume of the cell $ \sigma _ {i} ^ {r} $. For arbitrary chains the mass (finite or infinite) can be defined in various ways; for flat chains (see Flat norm) and sharp chains (see Sharp norm) these give the same value to the mass.
3) The co-mass of a (flat, in particular, sharp) cochain $ X $ is defined in the standard way:
$$ | X | = \ \sup _ {A \neq 0 } \ \frac{| X \cdot A | }{| A | } , $$
where $ A $ is a polyhedral chain and $ X \cdot A $ is the value of the cochain $ X $ on the chain $ A $.
For references see Flat norm.
Comments
A simple $ r $- vector $ \alpha $ is an element of the form $ \alpha = \beta _ {1} \lor \dots \lor \beta _ {r} $ in the $ r $- fold exterior product $ V _ {[} r] $ of a vector space $ V $. Here "" denotes exterior product and $ \beta _ {1} \dots \beta _ {r} \in V $.
References
[a1] | H. Federer, "Geometric measure theory" , Springer (1969) pp. Sect. 1.8 MR0257325 Zbl 0176.00801 |
Mass and co-mass. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mass_and_co-mass&oldid=47781