Difference between revisions of "Local cohomology"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0600901.png | ||
+ | $#A+1 = 127 n = 0 | ||
+ | $#C+1 = 127 : ~/encyclopedia/old_files/data/L060/L.0600090 Local cohomology | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''with values in a sheaf of Abelian groups'' | ''with values in a sheaf of Abelian groups'' | ||
− | A [[Cohomology|cohomology]] theory with values in a [[Sheaf|sheaf]] and with supports contained in a given subset. Let | + | A [[Cohomology|cohomology]] theory with values in a [[Sheaf|sheaf]] and with supports contained in a given subset. Let $ X $ |
+ | be a [[Topological space|topological space]], $ {\mathcal F} $ | ||
+ | a sheaf of Abelian groups on $ X $ | ||
+ | and $ Z $ | ||
+ | a locally closed subset of $ X $, | ||
+ | that is, a closed subset of some subset $ V $ | ||
+ | open in $ X $. | ||
+ | Then $ \Gamma _ {Z} ( X , {\mathcal F} ) $ | ||
+ | denotes the subgroup of $ \Gamma ( V , {\mathcal F} \mid _ {V} ) $ | ||
+ | consisting of the sections of the sheaf $ {\mathcal F} \mid _ {V} $ | ||
+ | with supports in $ Z $. | ||
+ | If $ Z $ | ||
+ | is fixed, then the correspondence $ {\mathcal F} \rightarrow \Gamma _ {Z} ( X , {\mathcal F} ) $ | ||
+ | defines a left-exact functor from the category of sheaves of Abelian groups on $ X $ | ||
+ | into the category of Abelian groups. The value of the corresponding $ i $- | ||
+ | th right [[Derived functor|derived functor]] on $ {\mathcal F} $ | ||
+ | is denoted by $ H _ {Z} ^ {i} ( X , {\mathcal F} ) $ | ||
+ | and is called the $ i $- | ||
+ | th local cohomology group of $ X $ | ||
+ | with values in $ {\mathcal F} $, | ||
+ | with respect to $ Z $. | ||
+ | One has | ||
− | + | $$ | |
+ | H _ {Z} ^ {0} ( X , {\mathcal F} ) = \Gamma _ {Z} ( X , {\mathcal F} ) . | ||
+ | $$ | ||
− | Let | + | Let $ {\mathcal H} _ {Z} ^ {0} ( {\mathcal F} ) $ |
+ | be the sheaf on $ X $ | ||
+ | corresponding to the pre-sheaf that associates with any open subset $ U \subset X $ | ||
+ | the group $ \Gamma _ {Z \cap U } ( U , {\mathcal F} \mid _ {U} ) $. | ||
+ | The correspondence $ {\mathcal F} \rightarrow {\mathcal H} _ {Z} ( {\mathcal F} ) $ | ||
+ | is a left-exact functor from the category of sheaves of Abelian groups on $ X $ | ||
+ | into itself. The value of its $ i $- | ||
+ | th right derived functor on $ {\mathcal F} $ | ||
+ | is denoted by $ {\mathcal H} _ {Z} ( {\mathcal F} ) $ | ||
+ | and is called the $ i $- | ||
+ | th local cohomology sheaf of $ {\mathcal F} $ | ||
+ | with respect to $ Z $. | ||
+ | The sheaf $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) $ | ||
+ | is associated with the pre-sheaf that associates with an open subset $ U \subset X $ | ||
+ | the group $ H _ {Z \cap U } ^ {i} ( U , {\mathcal F} \mid _ {U} ) $. | ||
− | There is a spectral sequence | + | There is a spectral sequence $ E _ {r} ^ {p,q} $, |
+ | converging to $ H _ {Z} ^ {p+} q ( X , {\mathcal F} ) $, | ||
+ | for which $ E _ {2} ^ {p,q} = H ^ {p} ( X , {\mathcal H} _ {Z} ^ {q} ( {\mathcal F} ) ) $( | ||
+ | see [[#References|[2]]], [[#References|[3]]]). | ||
− | Let | + | Let $ Z $ |
+ | be a locally closed subset of $ X $, | ||
+ | $ Z ^ \prime $ | ||
+ | a closed subset of $ Z $ | ||
+ | and $ Z ^ {\prime\prime} = Z \setminus Z ^ \prime $; | ||
+ | then there are the following exact sequences: | ||
− | + | $$ \tag{1 } | |
+ | 0 \rightarrow H _ {Z ^ \prime } ^ {0} ( X , {\mathcal F} ) \rightarrow \dots \rightarrow \ | ||
+ | H _ {Z ^ \prime } ^ {i} ( X , {\mathcal F} ) \rightarrow | ||
+ | $$ | ||
− | + | $$ | |
+ | \rightarrow \ | ||
+ | H _ {Z} ^ {i} ( X , {\mathcal F} ) \rightarrow H _ {Z ^ {\prime\prime} } ^ {i} ( | ||
+ | X , {\mathcal F} ) \rightarrow H _ {Z ^ \prime } ^ {i+} 1 ( X , {\mathcal F} ) \rightarrow \dots ; | ||
+ | $$ | ||
− | + | $$ \tag{2 } | |
+ | 0 \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {0} ( {\mathcal F} ) \rightarrow | ||
+ | \dots \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {i} ( {\mathcal F} ) \rightarrow | ||
+ | $$ | ||
− | + | $$ | |
+ | \rightarrow \ | ||
+ | {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) \rightarrow {\mathcal H} _ {Z ^ {\prime\prime} } ^ {i} | ||
+ | ( {\mathcal F} ) \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {i+} 1 ( {\mathcal F} ) \rightarrow \dots . | ||
+ | $$ | ||
− | If | + | If $ Z $ |
+ | is the whole of $ X $ | ||
+ | and $ Z ^ \prime $ | ||
+ | is a closed subset of $ X $, | ||
+ | then the sequence (2) gives the exact sequence | ||
− | + | $$ | |
+ | 0 \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {0} ( {\mathcal F} ) \rightarrow {\mathcal F} \rightarrow \ | ||
+ | {\mathcal H} _ {X \setminus Z ^ \prime } ^ {0} ( {\mathcal F} ) \rightarrow {\mathcal H} _ {Z ^ \prime } | ||
+ | ^ {1} ( {\mathcal F} ) \rightarrow 0 | ||
+ | $$ | ||
and the system of isomorphisms | and the system of isomorphisms | ||
− | + | $$ | |
+ | {\mathcal H} _ {X \setminus Z ^ \prime } ^ {i} ( {\mathcal F} ) \cong \ | ||
+ | {\mathcal H} _ {Z ^ \prime } ^ {i+} 1 ( {\mathcal F} ) ,\ i \geq 1 . | ||
+ | $$ | ||
− | The sheaves | + | The sheaves $ {\mathcal H} _ {X \setminus Z ^ \prime } ^ {i} ( {\mathcal F} ) $ |
+ | are called the $ i $- | ||
+ | th gap sheaves of $ {\mathcal F} $ | ||
+ | and have important applications in questions concerning the extension of sections and cohomology classes of $ {\mathcal F} $, | ||
+ | defined on $ X \setminus Z ^ \prime $, | ||
+ | to the whole of $ X $( | ||
+ | see [[#References|[4]]]). | ||
− | If | + | If $ X $ |
+ | is a locally [[Noetherian scheme|Noetherian scheme]], $ {\mathcal F} $ | ||
+ | is a [[Quasi-coherent sheaf|quasi-coherent sheaf]] on $ X $ | ||
+ | and $ Z $ | ||
+ | is a closed subscheme of $ X $, | ||
+ | then $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) $ | ||
+ | are quasi-coherent sheaves on $ X $. | ||
+ | If $ {\mathcal Y} $ | ||
+ | is a [[Coherent sheaf|coherent sheaf]] of ideals on $ X $ | ||
+ | that specifies the subscheme $ Z $, | ||
+ | then one has the isomorphisms | ||
− | + | $$ | |
+ | \lim\limits _ { {\ n \ } vec } \ | ||
+ | \mathop{\rm Ext} _ { {\mathcal O} _ {X} } ^ {i} | ||
+ | ( {\mathcal O} _ {X} / {\mathcal Y} ^ {n} , {\mathcal F} ) \cong \ | ||
+ | {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) . | ||
+ | $$ | ||
The following criteria for triviality and coherence of local cohomology sheaves are important for applications (see [[#References|[3]]], [[#References|[4]]]). | The following criteria for triviality and coherence of local cohomology sheaves are important for applications (see [[#References|[3]]], [[#References|[4]]]). | ||
− | Let | + | Let $ X $ |
+ | be a locally Noetherian scheme or a complex-analytic space, $ Z $ | ||
+ | a locally closed subscheme or analytic subspace of $ X $, | ||
+ | $ {\mathcal F} $ | ||
+ | a coherent sheaf of $ {\mathcal O} _ {X} $- | ||
+ | modules, and $ {\mathcal Y} $ | ||
+ | a coherent sheaf of ideals that specifies $ Z $. | ||
+ | Let | ||
− | + | $$ | |
+ | \mathop{\rm prof} _ {Z} {\mathcal F} = \ | ||
+ | \min _ {x \in Z } \ | ||
+ | \mathop{\rm prof} _ { {\mathcal Y} _ {X,x} } {\mathcal F} _ {x} , | ||
+ | $$ | ||
− | where | + | where $ \mathop{\rm prof} _ { {\mathcal Y} _ {X,x} } {\mathcal F} _ {x} $ |
+ | is the maximal length of a sequence of elements of $ {\mathcal Y} _ {X,x} $ | ||
+ | that is regular for $ {\mathcal F} _ {x} $, | ||
+ | or $ \infty $ | ||
+ | if $ {\mathcal F} _ {x} = 0 $. | ||
+ | Then the equality $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) = 0 $ | ||
+ | for $ i < n $ | ||
+ | is equivalent to the condition $ \mathop{\rm prof} _ {Z} {\mathcal F} \geq n $. | ||
+ | Let $ \mathop{\rm codh} _ {x} {\mathcal F} _ {x} = \mathop{\rm prof} _ {\mathfrak m _ {x} } {\mathcal F} _ {x} $( | ||
+ | where $ \mathfrak m $ | ||
+ | is the maximal ideal of the ring $ {\mathcal O} _ {X,x} $) | ||
+ | and let $ S _ {m} ( {\mathcal F} ) = \{ {x \in X } : { \mathop{\rm codh} _ {x} {\mathcal F} _ {x} \geq m } \} $. | ||
+ | If $ X $ | ||
+ | is a complex-analytic space or an algebraic variety, then all sets $ S _ {m} ( {\mathcal F} ) $ | ||
+ | are analytic or algebraic, respectively. If $ {\mathcal F} $ | ||
+ | is a coherent sheaf on $ X $ | ||
+ | and $ Z $ | ||
+ | is an analytic subspace or subvariety, respectively, then coherence of the sheaves $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) $ | ||
+ | for $ 0 \leq i \leq q $ | ||
+ | is equivalent to the condition | ||
− | + | $$ | |
+ | \mathop{\rm dim} Z \cap \overline{ {S _ {k+} q+ 1 }}\; | ||
+ | ( {\mathcal F} \mid _ {X \setminus Z } ) \leq k | ||
+ | $$ | ||
− | for any integer | + | for any integer $ k $. |
− | In terms of local cohomology one can define hyperfunctions, which have important applications in the theory of partial differential equations [[#References|[5]]]. Let | + | In terms of local cohomology one can define hyperfunctions, which have important applications in the theory of partial differential equations [[#References|[5]]]. Let $ \Omega $ |
+ | be an open subset of $ \mathbf R ^ {n} $, | ||
+ | which is naturally imbedded in $ \mathbf C ^ {n} $. | ||
+ | Then $ {\mathcal H} _ \Omega ^ {p} ( \mathbf C ^ {n} , {\mathcal O} _ {\mathbf C ^ {n} } ) = 0 $ | ||
+ | for $ p \neq n $. | ||
+ | The pre-sheaf $ \Omega \rightarrow {\mathcal H} _ \Omega ^ {n} ( \mathbf C ^ {n} , {\mathcal O} _ {\mathbf C ^ {n} } ) $ | ||
+ | on $ \mathbf R ^ {n} $ | ||
+ | defines a [[Flabby sheaf|flabby sheaf]], called the sheaf of hyperfunctions. | ||
An analogue of local cohomology also exists in [[Etale cohomology|étale cohomology]] theory [[#References|[3]]]. | An analogue of local cohomology also exists in [[Etale cohomology|étale cohomology]] theory [[#References|[3]]]. | ||
Line 51: | Line 194: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.V. Dolgachev, "Abstract algebraic geometry" ''Russian Math. Surveys'' , '''2''' : 3 (1974) pp. 264–303 ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''10''' (1972) pp. 47–112 {{MR|}} {{ZBL|1068.14059}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Local cohomology" , ''Lect. notes in math.'' , '''41''' , Springer (1967) {{MR|0224620}} {{ZBL|0185.49202}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Grothendieck, "Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux" , ''SGA 2'' , North-Holland & Masson (1968) {{MR|0476737}} {{ZBL|1079.14001}} {{ZBL|0159.50402}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Y.-T. Siu, "Gap-sheaves and extension of coherent analytic subsheaves" , Springer (1971) {{MR|0287033}} {{ZBL|0208.10403}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P. Schapira, "Théorie des hyperfonctions" , ''Lect. notes in math.'' , '''126''' , Springer (1970) {{MR|0631543}} {{MR|0270151}} {{ZBL|0201.44805}} {{ZBL|0192.47305}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces" , Wiley (1976) (Translated from Rumanian) {{MR|0463470}} {{ZBL|0334.32001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.V. Dolgachev, "Abstract algebraic geometry" ''Russian Math. Surveys'' , '''2''' : 3 (1974) pp. 264–303 ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''10''' (1972) pp. 47–112 {{MR|}} {{ZBL|1068.14059}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck, "Local cohomology" , ''Lect. notes in math.'' , '''41''' , Springer (1967) {{MR|0224620}} {{ZBL|0185.49202}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Grothendieck, "Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux" , ''SGA 2'' , North-Holland & Masson (1968) {{MR|0476737}} {{ZBL|1079.14001}} {{ZBL|0159.50402}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> Y.-T. Siu, "Gap-sheaves and extension of coherent analytic subsheaves" , Springer (1971) {{MR|0287033}} {{ZBL|0208.10403}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P. Schapira, "Théorie des hyperfonctions" , ''Lect. notes in math.'' , '''126''' , Springer (1970) {{MR|0631543}} {{MR|0270151}} {{ZBL|0201.44805}} {{ZBL|0192.47305}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces" , Wiley (1976) (Translated from Rumanian) {{MR|0463470}} {{ZBL|0334.32001}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
See also [[Hyperfunction|Hyperfunction]] for the sheaf of hyperfunctions. | See also [[Hyperfunction|Hyperfunction]] for the sheaf of hyperfunctions. | ||
− | For an ideal | + | For an ideal $ \mathfrak a $ |
+ | in a commutative ring $ R $ | ||
+ | with unit element the local cohomology can be described as follows. Let $ A $ | ||
+ | be the set of prime ideals in $ R $ | ||
+ | containing $ \mathfrak a $. | ||
+ | For an $ R $- | ||
+ | module $ M $ | ||
+ | the submodule $ \Gamma _ {A} ( M) $ | ||
+ | is defined as $ \{ {m } : {\textrm{ support } ( m) \subset A } \} $. | ||
+ | Thus, | ||
− | + | $$ | |
+ | \Gamma _ {A} ( M) = \{ {m } : { \mathop{\rm rad} ( \mathop{\rm Ann} ( m)) \supset \mathfrak a } \} = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \{ m : \mathfrak a ^ {n} m = 0 \ | ||
+ | \textrm{ for } n \textrm{ large enough } \} \simeq | ||
+ | $$ | ||
− | + | $$ | |
+ | \simeq \ | ||
+ | \lim\limits _ { {\ n \ } vec } \mathop{\rm Hom} _ {R} ( R / \mathfrak a ^ {n} , M ) . | ||
+ | $$ | ||
− | + | $ M \mapsto \Gamma _ {A} ( M) $ | |
+ | is a covariant, left-exact, $ R $- | ||
+ | linear functor from the category of $ R $- | ||
+ | modules into itself. Its derived functors are the local cohomology functors $ {\mathcal H} _ {A} ^ {i} ( M) $( | ||
+ | of $ M $ | ||
+ | with respect to $ A $( | ||
+ | or $ \mathfrak a $)). | ||
+ | These cohomology functors can be explicitly calculated using Koszul complexes, cf. [[Koszul complex|Koszul complex]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Y.-T. Siu, "Techniques of extension of analytic objects" , M. Dekker (1974) {{MR|0361154}} {{ZBL|0294.32007}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Y.-T. Siu, "Techniques of extension of analytic objects" , M. Dekker (1974) {{MR|0361154}} {{ZBL|0294.32007}} </TD></TR></table> |
Latest revision as of 22:17, 5 June 2020
with values in a sheaf of Abelian groups
A cohomology theory with values in a sheaf and with supports contained in a given subset. Let $ X $ be a topological space, $ {\mathcal F} $ a sheaf of Abelian groups on $ X $ and $ Z $ a locally closed subset of $ X $, that is, a closed subset of some subset $ V $ open in $ X $. Then $ \Gamma _ {Z} ( X , {\mathcal F} ) $ denotes the subgroup of $ \Gamma ( V , {\mathcal F} \mid _ {V} ) $ consisting of the sections of the sheaf $ {\mathcal F} \mid _ {V} $ with supports in $ Z $. If $ Z $ is fixed, then the correspondence $ {\mathcal F} \rightarrow \Gamma _ {Z} ( X , {\mathcal F} ) $ defines a left-exact functor from the category of sheaves of Abelian groups on $ X $ into the category of Abelian groups. The value of the corresponding $ i $- th right derived functor on $ {\mathcal F} $ is denoted by $ H _ {Z} ^ {i} ( X , {\mathcal F} ) $ and is called the $ i $- th local cohomology group of $ X $ with values in $ {\mathcal F} $, with respect to $ Z $. One has
$$ H _ {Z} ^ {0} ( X , {\mathcal F} ) = \Gamma _ {Z} ( X , {\mathcal F} ) . $$
Let $ {\mathcal H} _ {Z} ^ {0} ( {\mathcal F} ) $ be the sheaf on $ X $ corresponding to the pre-sheaf that associates with any open subset $ U \subset X $ the group $ \Gamma _ {Z \cap U } ( U , {\mathcal F} \mid _ {U} ) $. The correspondence $ {\mathcal F} \rightarrow {\mathcal H} _ {Z} ( {\mathcal F} ) $ is a left-exact functor from the category of sheaves of Abelian groups on $ X $ into itself. The value of its $ i $- th right derived functor on $ {\mathcal F} $ is denoted by $ {\mathcal H} _ {Z} ( {\mathcal F} ) $ and is called the $ i $- th local cohomology sheaf of $ {\mathcal F} $ with respect to $ Z $. The sheaf $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) $ is associated with the pre-sheaf that associates with an open subset $ U \subset X $ the group $ H _ {Z \cap U } ^ {i} ( U , {\mathcal F} \mid _ {U} ) $.
There is a spectral sequence $ E _ {r} ^ {p,q} $, converging to $ H _ {Z} ^ {p+} q ( X , {\mathcal F} ) $, for which $ E _ {2} ^ {p,q} = H ^ {p} ( X , {\mathcal H} _ {Z} ^ {q} ( {\mathcal F} ) ) $( see [2], [3]).
Let $ Z $ be a locally closed subset of $ X $, $ Z ^ \prime $ a closed subset of $ Z $ and $ Z ^ {\prime\prime} = Z \setminus Z ^ \prime $; then there are the following exact sequences:
$$ \tag{1 } 0 \rightarrow H _ {Z ^ \prime } ^ {0} ( X , {\mathcal F} ) \rightarrow \dots \rightarrow \ H _ {Z ^ \prime } ^ {i} ( X , {\mathcal F} ) \rightarrow $$
$$ \rightarrow \ H _ {Z} ^ {i} ( X , {\mathcal F} ) \rightarrow H _ {Z ^ {\prime\prime} } ^ {i} ( X , {\mathcal F} ) \rightarrow H _ {Z ^ \prime } ^ {i+} 1 ( X , {\mathcal F} ) \rightarrow \dots ; $$
$$ \tag{2 } 0 \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {0} ( {\mathcal F} ) \rightarrow \dots \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {i} ( {\mathcal F} ) \rightarrow $$
$$ \rightarrow \ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) \rightarrow {\mathcal H} _ {Z ^ {\prime\prime} } ^ {i} ( {\mathcal F} ) \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {i+} 1 ( {\mathcal F} ) \rightarrow \dots . $$
If $ Z $ is the whole of $ X $ and $ Z ^ \prime $ is a closed subset of $ X $, then the sequence (2) gives the exact sequence
$$ 0 \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {0} ( {\mathcal F} ) \rightarrow {\mathcal F} \rightarrow \ {\mathcal H} _ {X \setminus Z ^ \prime } ^ {0} ( {\mathcal F} ) \rightarrow {\mathcal H} _ {Z ^ \prime } ^ {1} ( {\mathcal F} ) \rightarrow 0 $$
and the system of isomorphisms
$$ {\mathcal H} _ {X \setminus Z ^ \prime } ^ {i} ( {\mathcal F} ) \cong \ {\mathcal H} _ {Z ^ \prime } ^ {i+} 1 ( {\mathcal F} ) ,\ i \geq 1 . $$
The sheaves $ {\mathcal H} _ {X \setminus Z ^ \prime } ^ {i} ( {\mathcal F} ) $ are called the $ i $- th gap sheaves of $ {\mathcal F} $ and have important applications in questions concerning the extension of sections and cohomology classes of $ {\mathcal F} $, defined on $ X \setminus Z ^ \prime $, to the whole of $ X $( see [4]).
If $ X $ is a locally Noetherian scheme, $ {\mathcal F} $ is a quasi-coherent sheaf on $ X $ and $ Z $ is a closed subscheme of $ X $, then $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) $ are quasi-coherent sheaves on $ X $. If $ {\mathcal Y} $ is a coherent sheaf of ideals on $ X $ that specifies the subscheme $ Z $, then one has the isomorphisms
$$ \lim\limits _ { {\ n \ } vec } \ \mathop{\rm Ext} _ { {\mathcal O} _ {X} } ^ {i} ( {\mathcal O} _ {X} / {\mathcal Y} ^ {n} , {\mathcal F} ) \cong \ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) . $$
The following criteria for triviality and coherence of local cohomology sheaves are important for applications (see [3], [4]).
Let $ X $ be a locally Noetherian scheme or a complex-analytic space, $ Z $ a locally closed subscheme or analytic subspace of $ X $, $ {\mathcal F} $ a coherent sheaf of $ {\mathcal O} _ {X} $- modules, and $ {\mathcal Y} $ a coherent sheaf of ideals that specifies $ Z $. Let
$$ \mathop{\rm prof} _ {Z} {\mathcal F} = \ \min _ {x \in Z } \ \mathop{\rm prof} _ { {\mathcal Y} _ {X,x} } {\mathcal F} _ {x} , $$
where $ \mathop{\rm prof} _ { {\mathcal Y} _ {X,x} } {\mathcal F} _ {x} $ is the maximal length of a sequence of elements of $ {\mathcal Y} _ {X,x} $ that is regular for $ {\mathcal F} _ {x} $, or $ \infty $ if $ {\mathcal F} _ {x} = 0 $. Then the equality $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) = 0 $ for $ i < n $ is equivalent to the condition $ \mathop{\rm prof} _ {Z} {\mathcal F} \geq n $. Let $ \mathop{\rm codh} _ {x} {\mathcal F} _ {x} = \mathop{\rm prof} _ {\mathfrak m _ {x} } {\mathcal F} _ {x} $( where $ \mathfrak m $ is the maximal ideal of the ring $ {\mathcal O} _ {X,x} $) and let $ S _ {m} ( {\mathcal F} ) = \{ {x \in X } : { \mathop{\rm codh} _ {x} {\mathcal F} _ {x} \geq m } \} $. If $ X $ is a complex-analytic space or an algebraic variety, then all sets $ S _ {m} ( {\mathcal F} ) $ are analytic or algebraic, respectively. If $ {\mathcal F} $ is a coherent sheaf on $ X $ and $ Z $ is an analytic subspace or subvariety, respectively, then coherence of the sheaves $ {\mathcal H} _ {Z} ^ {i} ( {\mathcal F} ) $ for $ 0 \leq i \leq q $ is equivalent to the condition
$$ \mathop{\rm dim} Z \cap \overline{ {S _ {k+} q+ 1 }}\; ( {\mathcal F} \mid _ {X \setminus Z } ) \leq k $$
for any integer $ k $.
In terms of local cohomology one can define hyperfunctions, which have important applications in the theory of partial differential equations [5]. Let $ \Omega $ be an open subset of $ \mathbf R ^ {n} $, which is naturally imbedded in $ \mathbf C ^ {n} $. Then $ {\mathcal H} _ \Omega ^ {p} ( \mathbf C ^ {n} , {\mathcal O} _ {\mathbf C ^ {n} } ) = 0 $ for $ p \neq n $. The pre-sheaf $ \Omega \rightarrow {\mathcal H} _ \Omega ^ {n} ( \mathbf C ^ {n} , {\mathcal O} _ {\mathbf C ^ {n} } ) $ on $ \mathbf R ^ {n} $ defines a flabby sheaf, called the sheaf of hyperfunctions.
An analogue of local cohomology also exists in étale cohomology theory [3].
References
[1] | I.V. Dolgachev, "Abstract algebraic geometry" Russian Math. Surveys , 2 : 3 (1974) pp. 264–303 Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 10 (1972) pp. 47–112 Zbl 1068.14059 |
[2] | A. Grothendieck, "Local cohomology" , Lect. notes in math. , 41 , Springer (1967) MR0224620 Zbl 0185.49202 |
[3] | A. Grothendieck, "Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux" , SGA 2 , North-Holland & Masson (1968) MR0476737 Zbl 1079.14001 Zbl 0159.50402 |
[4] | Y.-T. Siu, "Gap-sheaves and extension of coherent analytic subsheaves" , Springer (1971) MR0287033 Zbl 0208.10403 |
[5] | P. Schapira, "Théorie des hyperfonctions" , Lect. notes in math. , 126 , Springer (1970) MR0631543 MR0270151 Zbl 0201.44805 Zbl 0192.47305 |
[6] | C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces" , Wiley (1976) (Translated from Rumanian) MR0463470 Zbl 0334.32001 |
Comments
See also Hyperfunction for the sheaf of hyperfunctions.
For an ideal $ \mathfrak a $ in a commutative ring $ R $ with unit element the local cohomology can be described as follows. Let $ A $ be the set of prime ideals in $ R $ containing $ \mathfrak a $. For an $ R $- module $ M $ the submodule $ \Gamma _ {A} ( M) $ is defined as $ \{ {m } : {\textrm{ support } ( m) \subset A } \} $. Thus,
$$ \Gamma _ {A} ( M) = \{ {m } : { \mathop{\rm rad} ( \mathop{\rm Ann} ( m)) \supset \mathfrak a } \} = $$
$$ = \ \{ m : \mathfrak a ^ {n} m = 0 \ \textrm{ for } n \textrm{ large enough } \} \simeq $$
$$ \simeq \ \lim\limits _ { {\ n \ } vec } \mathop{\rm Hom} _ {R} ( R / \mathfrak a ^ {n} , M ) . $$
$ M \mapsto \Gamma _ {A} ( M) $ is a covariant, left-exact, $ R $- linear functor from the category of $ R $- modules into itself. Its derived functors are the local cohomology functors $ {\mathcal H} _ {A} ^ {i} ( M) $( of $ M $ with respect to $ A $( or $ \mathfrak a $)). These cohomology functors can be explicitly calculated using Koszul complexes, cf. Koszul complex.
References
[a1] | Y.-T. Siu, "Techniques of extension of analytic objects" , M. Dekker (1974) MR0361154 Zbl 0294.32007 |
Local cohomology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Local_cohomology&oldid=47679