Namespaces
Variants
Actions

Difference between revisions of "Lie ternary system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587501.png" /> with a trilinear composition
+
<!--
 +
l0587501.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/L058/L.0508750 Lie ternary system
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587502.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Vector space|vector space]]  $  \mathfrak m $
 +
with a trilinear composition
 +
 
 +
$$
 +
\mathfrak m \times \mathfrak m \times \mathfrak m  \rightarrow  \mathfrak m ,\ \
 +
( X , Y , Z )  \rightarrow  [ X , Y , Z ] ,
 +
$$
  
 
satisfying the following conditions:
 
satisfying the following conditions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587503.png" /></td> </tr></table>
+
$$
 +
[ X , X , Y ]  = 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587504.png" /></td> </tr></table>
+
$$
 +
[ X , Y , Z ] + [ Y , Z , X ] + [ Z , X , Y ]  = 0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587505.png" /></td> </tr></table>
+
$$
 +
[ X , Y , [ Z , U , V ] ] =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587506.png" /></td> </tr></table>
+
$$
 +
= \
 +
[ [ X , Y , Z ] , U , V ] + [ Z , [ X , Y
 +
, U ] , V ] + [ Z , U , [ X , Y , V ] ] .
 +
$$
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587507.png" /> is a [[Lie algebra|Lie algebra]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587508.png" /> is a subspace such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l0587509.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l05875010.png" />, then the operation
+
If $  \mathfrak g $
 +
is a [[Lie algebra|Lie algebra]] and $  \mathfrak m \subset  \mathfrak g $
 +
is a subspace such that $  [ [ X , Y ] , Z ] \in \mathfrak m $
 +
for any $  X , Y , Z \in \mathfrak m $,  
 +
then the operation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l05875011.png" /></td> </tr></table>
+
$$
 +
[ X , Y , Z ]  = [ [ X , Y ] , Z ]
 +
$$
  
converts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l05875012.png" /> into a Lie ternary system. Conversely, every Lie ternary system can be obtained in this way from some Lie algebra.
+
converts $  \mathfrak m $
 +
into a Lie ternary system. Conversely, every Lie ternary system can be obtained in this way from some Lie algebra.
  
The category of finite-dimensional Lie ternary systems over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058750/l05875013.png" /> is equivalent to the category of simply-connected symmetric homogeneous spaces (see [[Symmetric space|Symmetric space]]).
+
The category of finite-dimensional Lie ternary systems over the field $  \mathbf R $
 +
is equivalent to the category of simply-connected symmetric homogeneous spaces (see [[Symmetric space|Symmetric space]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Loos,  "Symmetric spaces" , '''1''' , Benjamin  (1969)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  O. Loos,  "Symmetric spaces" , '''1''' , Benjamin  (1969)</TD></TR></table>

Latest revision as of 22:16, 5 June 2020


A vector space $ \mathfrak m $ with a trilinear composition

$$ \mathfrak m \times \mathfrak m \times \mathfrak m \rightarrow \mathfrak m ,\ \ ( X , Y , Z ) \rightarrow [ X , Y , Z ] , $$

satisfying the following conditions:

$$ [ X , X , Y ] = 0 , $$

$$ [ X , Y , Z ] + [ Y , Z , X ] + [ Z , X , Y ] = 0 , $$

$$ [ X , Y , [ Z , U , V ] ] = $$

$$ = \ [ [ X , Y , Z ] , U , V ] + [ Z , [ X , Y , U ] , V ] + [ Z , U , [ X , Y , V ] ] . $$

If $ \mathfrak g $ is a Lie algebra and $ \mathfrak m \subset \mathfrak g $ is a subspace such that $ [ [ X , Y ] , Z ] \in \mathfrak m $ for any $ X , Y , Z \in \mathfrak m $, then the operation

$$ [ X , Y , Z ] = [ [ X , Y ] , Z ] $$

converts $ \mathfrak m $ into a Lie ternary system. Conversely, every Lie ternary system can be obtained in this way from some Lie algebra.

The category of finite-dimensional Lie ternary systems over the field $ \mathbf R $ is equivalent to the category of simply-connected symmetric homogeneous spaces (see Symmetric space).

References

[1] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)
[2] O. Loos, "Symmetric spaces" , 1 , Benjamin (1969)
How to Cite This Entry:
Lie ternary system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_ternary_system&oldid=47633
This article was adapted from an original article by A.S. Fedenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article