Namespaces
Variants
Actions

Difference between revisions of "Laplace operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
l0575101.png
 +
$#A+1 = 115 n = 0
 +
$#C+1 = 115 : ~/encyclopedia/old_files/data/L057/L.0507510 Laplace operator,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Laplacian''
 
''Laplacian''
  
The differential operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575101.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575102.png" /> defined by the formula
+
The differential operator $  \Delta $
 +
in $  \mathbf R  ^ {n} $
 +
defined by the formula
 +
 
 +
$$ \tag{1 }
 +
\Delta  = \
 +
 
 +
\frac{\partial  ^ {2} }{\partial  x _ {1}  ^ {2} }
 +
+ \dots +
 +
 
 +
\frac{\partial  ^ {2} }{\partial  x _ {n}  ^ {2} }
 +
 
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575103.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
(here  $  x _ {1} \dots x _ {n} $
 +
are coordinates in  $  \mathbf R  ^ {n} $),
 +
as well as some generalizations of it. The Laplace operator (1) is the simplest elliptic differential operator of the second order. The Laplace operator plays an important role in mathematical analysis, mathematical physics and geometry (see, for example, [[Laplace equation|Laplace equation]]; [[Laplace–Beltrami equation|Laplace–Beltrami equation]]; [[Harmonic function|Harmonic function]]; [[Harmonic form|Harmonic form]]). Let  $  M $
 +
be an  $  n $-
 +
dimensional [[Riemannian manifold|Riemannian manifold]] with metric
  
(here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575104.png" /> are coordinates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575105.png" />), as well as some generalizations of it. The Laplace operator (1) is the simplest elliptic differential operator of the second order. The Laplace operator plays an important role in mathematical analysis, mathematical physics and geometry (see, for example, [[Laplace equation|Laplace equation]]; [[Laplace–Beltrami equation|Laplace–Beltrami equation]]; [[Harmonic function|Harmonic function]]; [[Harmonic form|Harmonic form]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575106.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575107.png" />-dimensional [[Riemannian manifold|Riemannian manifold]] with metric
+
$$ \tag{2 }
 +
d s  ^ {2}  = g _ {ij}  d x  ^ {i}  d x  ^ {j} ,\ \
 +
g _ {ij}  = g _ {ji} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575108.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
let  $  \| g  ^ {ij} \| $
 +
be the matrix inverse to the matrix  $  \| g _ {ij} \| $
 +
and let  $  g = \mathop{\rm det}  \| g _ {ij} \| $.  
 +
Then the Laplace operator (or Laplace–Beltrami operator) on  $  M $
 +
with the Riemannian metric (2) has the form
  
let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l0575109.png" /> be the matrix inverse to the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751010.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751011.png" />. Then the Laplace operator (or Laplace–Beltrami operator) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751012.png" /> with the Riemannian metric (2) has the form
+
$$ \tag{3 }
 +
\Delta u  = -
 +
\frac{1}{\sqrt g}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751013.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
\frac \partial {\partial  x  ^ {i} }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751014.png" /> are local coordinates on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751015.png" />. (The operator (1) differs in sign from the Laplace operator on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751016.png" /> with the standard Euclidean metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751017.png" />.)
+
\left ( \sqrt g g  ^ {ij}
  
A generalization of the operator (3) is the Laplace operator on differential forms (cf. also [[Differential form|Differential form]]). Namely, in the space of exterior differential forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751018.png" /> the Laplace operator has the form
+
\frac{\partial  u }{\partial  x  ^ {j} }
 +
\right ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
where  $  ( x  ^ {1} \dots x  ^ {n} ) $
 +
are local coordinates on  $  M $.  
 +
(The operator (1) differs in sign from the Laplace operator on  $  \mathbf R  ^ {n} $
 +
with the standard Euclidean metric  $  d s  ^ {2} = ( d x  ^ {1} )  ^ {2} + \dots + ( d x  ^ {n} )  ^ {2} $.)
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751020.png" /> is the operator of exterior differentiation of a form and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751021.png" /> is the operator formally adjoint to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751022.png" />, defined by means of the following inner product on smooth forms with compact support:
+
A generalization of the operator (3) is the Laplace operator on differential forms (cf. also [[Differential form|Differential form]]). Namely, in the space of exterior differential forms on  $  M $
 +
the Laplace operator has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{4 }
 +
\Delta  = ( d + d  ^ {*} ) ^ {2}  =  d d  ^ {*} + d  ^ {*} d ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751024.png" /> is the Hodge star operator induced by the metric (2) taking a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751025.png" />-form into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751026.png" />-form. In (5) the forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751028.png" /> are assumed to be real; on complex forms one must use the Hermitian extension of the inner product (5). The restriction of the operator (4) to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751029.png" />-forms (that is, functions) is specified by (3). On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751030.png" />-forms with an arbitrary integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751031.png" /> the Laplace operator in local coordinates can be written in the form
+
where $  d $
 +
is the operator of exterior differentiation of a form and  $  d  ^ {*} $
 +
is the operator formally adjoint to $  d $,
 +
defined by means of the following inner product on smooth forms with compact support:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751032.png" /></td> </tr></table>
+
$$ \tag{5 }
 +
( \alpha , \beta )  = \int\limits \alpha \wedge \star \beta ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751033.png" /></td> </tr></table>
+
where  $  \star $
 +
is the Hodge star operator induced by the metric (2) taking a  $  p $-
 +
form into an  $  ( n - p ) $-
 +
form. In (5) the forms  $  \alpha $
 +
and  $  \beta $
 +
are assumed to be real; on complex forms one must use the Hermitian extension of the inner product (5). The restriction of the operator (4) to  $  0 $-
 +
forms (that is, functions) is specified by (3). On  $  p $-
 +
forms with an arbitrary integer  $  p \geq  0 $
 +
the Laplace operator in local coordinates can be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751034.png" /></td> </tr></table>
+
$$
 +
\Delta ( a _ {i _ {1}  \dots i _ {p} }
 +
d x ^ {i _ {1} } \wedge \dots \wedge d x ^ {i _ {p} } ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751035.png" /></td> </tr></table>
+
$$
 +
= \
 +
\left \{ - \nabla  ^ {i} \nabla _ {i} a _ {i _ {1}  \dots i _ {p} } +
 +
\sum _ {\nu = 1 } ^ { p }  (- 1)  ^  \nu  R _ {i _  \nu  }  ^ {n}
 +
a _ {n i _ {1}  \dots \widehat{i}  _  \nu  \dots i _ {p} } \right . +
 +
$$
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751037.png" /> are the covariant derivatives with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751038.png" /> (cf. [[Covariant derivative|Covariant derivative]]), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751039.png" /> is the [[Curvature tensor|curvature tensor]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751040.png" /> is the [[Ricci tensor|Ricci tensor]].
+
$$
 +
\left . + 2 \sum _ {\mu < \nu } (- 1) ^ {\mu + \nu } R _ {\cdot i _  \nu  \cdot i _  \mu  } ^ {n \cdot k \cdot } a _ {k n i _ {1}  \dots \widehat{i}  _  \mu  \dots \widehat{i}  _  \nu  \dots i _ {p} } \right \} \times
 +
$$
 +
 
 +
$$
 +
\times
 +
d x ^ {i _ {1} } \wedge \dots \wedge d x ^ {i _ {p} } .
 +
$$
 +
 
 +
Here  $  \nabla  ^ {i} $
 +
and $  \nabla _ {i} $
 +
are the covariant derivatives with respect to $  x  ^ {i} $(
 +
cf. [[Covariant derivative|Covariant derivative]]), $  R _ {\cdot j \cdot l }  ^ {i \cdot k \cdot } $
 +
is the [[Curvature tensor|curvature tensor]] and $  R _ {k}  ^ {n} = R _ {\cdot i \cdot k }  ^ {n \cdot i \cdot } $
 +
is the [[Ricci tensor|Ricci tensor]].
  
 
Suppose one is given an arbitrary elliptic complex
 
Suppose one is given an arbitrary elliptic complex
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751041.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
\dots \rightarrow  \Gamma ( E _ {p-} 1 )  \rightarrow ^ { d }  \
 +
\Gamma ( E _ {p} )  \rightarrow ^ { d }  \Gamma ( E _ {p+} 1 ) \rightarrow \dots ,
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751042.png" /> are real or complex vector bundles on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751043.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751044.png" /> are their spaces of smooth sections. Introducing a Hermitian metric in each vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751045.png" /> and also specifying the volume element on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751046.png" /> in an arbitrary way, one can define a Hermitian inner product in the space of smooth sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751047.png" /> with compact support. Then operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751048.png" /> formally adjoint to the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751049.png" /> are defined. The Laplace operator (4) is then constructed on each space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751050.png" /> by formula (3). If for the complex (6) one takes the de Rham complex, then for a natural choice of the metric on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751051.png" />-forms and the volume element induced by the metric (2), one obtains for the Laplace operator of the de Rham complex the Laplace operator on forms, described above.
+
where the $  E _ {p} $
 +
are real or complex vector bundles on $  M $
 +
and the $  \Gamma ( E _ {p} ) $
 +
are their spaces of smooth sections. Introducing a Hermitian metric in each vector bundle $  E _ {p} $
 +
and also specifying the volume element on $  M $
 +
in an arbitrary way, one can define a Hermitian inner product in the space of smooth sections of $  E _ {p} $
 +
with compact support. Then operators $  d  ^ {*} $
 +
formally adjoint to the operator $  d $
 +
are defined. The Laplace operator (4) is then constructed on each space $  \Gamma ( E _ {p} ) $
 +
by formula (3). If for the complex (6) one takes the de Rham complex, then for a natural choice of the metric on the $  p $-
 +
forms and the volume element induced by the metric (2), one obtains for the Laplace operator of the de Rham complex the Laplace operator on forms, described above.
  
On a complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751052.png" />, together with the de Rham complex there are also the elliptic complexes
+
On a complex manifold $  M $,  
 +
together with the de Rham complex there are also the elliptic complexes
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751053.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7 }
 +
\dots \rightarrow  \Lambda  ^ {p-} 1,q  \mathop \rightarrow \limits ^  \partial  \
 +
\Lambda  ^ {p,q}  \mathop \rightarrow \limits ^  \partial    \Lambda  ^ {p+} 1,q  \rightarrow \dots ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751054.png" /></td> <td valign="top" style="width:5%;text-align:right;">(8)</td></tr></table>
+
$$ \tag{8 }
 +
\dots \rightarrow  \Lambda  ^ {p,q-} 1  \mathop \rightarrow \limits ^ { {\overline \partial \; }}  \Lambda  ^ {p,q}  \mathop \rightarrow \limits ^ { {\overline \partial \; }}  \Lambda ^ {p,q + 1 }  \rightarrow \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751055.png" /> is the space of smooth forms of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751056.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751057.png" />. Introducing a Hermitian structure in the tangent bundle on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751058.png" />, one can construct the Laplace operator (4) of the de Rham complex and the Laplace operators of the complexes (7) and (8):
+
where $  \Lambda  ^ {p,q} $
 +
is the space of smooth forms of type $  ( p , q ) $
 +
on $  M $.  
 +
Introducing a Hermitian structure in the tangent bundle on $  M $,  
 +
one can construct the Laplace operator (4) of the de Rham complex and the Laplace operators of the complexes (7) and (8):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751059.png" /></td> </tr></table>
+
$$
 +
\square  = \partial  \partial  ^ {*} + \partial  ^ {*} \partial  ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751060.png" /></td> </tr></table>
+
$$
 +
\overline \square \;  = {\overline \partial \; } {\overline \partial \; {}  ^ {*} } + \overline \partial \; {}  ^ {*} \overline \partial \; .
 +
$$
  
Each of these operators takes the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751061.png" /> into itself. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751062.png" /> is a [[Kähler manifold|Kähler manifold]] and the Hermitian structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751063.png" /> is induced by the [[Kähler metric|Kähler metric]], then
+
Each of these operators takes the space $  \Lambda  ^ {p,q} $
 +
into itself. If $  M $
 +
is a [[Kähler manifold|Kähler manifold]] and the Hermitian structure on $  M $
 +
is induced by the [[Kähler metric|Kähler metric]], then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751064.png" /></td> </tr></table>
+
$$
 +
\Delta  = 2 \square  = 2 \overline \square \; .
 +
$$
  
An important fact, which determines the role of the Laplace operator of an elliptic complex, is the existence in the case of a compact manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751065.png" /> of the orthogonal Weyl decomposition:
+
An important fact, which determines the role of the Laplace operator of an elliptic complex, is the existence in the case of a compact manifold $  M $
 +
of the orthogonal Weyl decomposition:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751066.png" /></td> <td valign="top" style="width:5%;text-align:right;">(9)</td></tr></table>
+
$$ \tag{9 }
 +
\Gamma ( E _ {p} )  = d ( \Gamma ( E _ {p-} 1 ) ) \oplus
 +
{\mathcal H}  ^ {p} ( E) \oplus d  ^ {*} ( \Gamma ( E _ {p+} 1 ) ) .
 +
$$
  
In this decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751067.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751068.png" /> is the Laplace operator of the complex (6), so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751069.png" /> is the space of  "harmonic"  sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751070.png" /> (in the case of the de Rham complex, this is the space of all harmonic forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751071.png" />). The direct sum of the first two terms on the right-hand side of (9) is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751072.png" />, and the direct sum of the last two terms coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751073.png" />. In particular, the decomposition (9) gives an isomorphism between the cohomology space of the complex (6) in the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751074.png" /> and the space of harmonic sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751075.png" />.
+
In this decomposition $  {\mathcal H}  ^ {p} ( E) = \mathop{\rm ker}  \Delta \mid  _ {\Gamma ( E _ {p}  ) } $,  
 +
where $  \Delta $
 +
is the Laplace operator of the complex (6), so that $  {\mathcal H}  ^ {p} ( E) $
 +
is the space of  "harmonic"  sections of $  E _ {p} $(
 +
in the case of the de Rham complex, this is the space of all harmonic forms of degree $  p $).  
 +
The direct sum of the first two terms on the right-hand side of (9) is equal to $  \mathop{\rm Ker}  d \mid  _ {\Gamma ( E _ {p}  ) } $,  
 +
and the direct sum of the last two terms coincides with $  \mathop{\rm Ker}  d  ^ {*} \mid  _ {\Gamma ( E _ {p}  ) } $.  
 +
In particular, the decomposition (9) gives an isomorphism between the cohomology space of the complex (6) in the term $  \Gamma ( E _ {p} ) $
 +
and the space of harmonic sections $  {\mathcal H}  ^ {p} ( E) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. de Rham,  "Differentiable manifolds" , Springer  (1984)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.S. Chern,  "Complex manifolds" , Univ. Recife  (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R.O. Wells jr.,  "Differential analysis on complex manifolds" , Springer  (1980)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. de Rham,  "Differentiable manifolds" , Springer  (1984)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S.S. Chern,  "Complex manifolds" , Univ. Recife  (1959)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  R.O. Wells jr.,  "Differential analysis on complex manifolds" , Springer  (1980)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751076.png" /> be a finite-dimensional vector space with an inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751077.png" /> and suppose an [[Orientation|orientation]] is given on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751078.png" />. Choose an orthonormal basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751079.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751080.png" /> in the given orientation class. The Hodge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751082.png" />-operator (Hodge star operator, star operator)
+
Let $  V $
 +
be a finite-dimensional vector space with an inner product $  \langle  , \rangle $
 +
and suppose an [[Orientation|orientation]] is given on $  V $.  
 +
Choose an orthonormal basis $  ( e _ {1} \dots e _ {n} ) $
 +
of $  V $
 +
in the given orientation class. The Hodge $  \star $-
 +
operator (Hodge star operator, star operator)
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751083.png" /></td> </tr></table>
+
$$
 +
\star : \wedge  ^ {p} V  \rightarrow  \wedge ^ {n - p } V
 +
$$
  
 
is defined by
 
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751084.png" /></td> </tr></table>
+
$$
 +
\star ( e _ {i _ {1}  } \wedge \dots \wedge e _ {i _ {p}  } )  = \
 +
\pm  e _ {j _ {1}  } \wedge \dots \wedge e _ {j _ {n - p }  } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751085.png" /> and the plus (respectively, minus) sign is taken depending on whether the permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751086.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751087.png" /> is even or odd.
+
where $  \{ i _ {1} \dots i _ {p} ;  j _ {1} \dots j _ {n - p }  \} = \{ 1 \dots n \} $
 +
and the plus (respectively, minus) sign is taken depending on whether the permutation $  \{ i _ {1} \dots i _ {p} , j _ {1} \dots j _ {n - p }  \} $
 +
of $  \{ 1 \dots n \} $
 +
is even or odd.
  
Declaring that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751089.png" />, form an orthonormal basis for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751090.png" /> defines an inner product on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751091.png" />, said to be induced from that of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751092.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751093.png" /> be the volume form determined by the chosen orientation. Then (extending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751094.png" /> by linearity to all of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751095.png" />),
+
Declaring that the $  e _ {i _ {1}  } \wedge \dots \wedge e _ {i _ {p}  } $,
 +
$  i _ {1} < \dots < i _ {p} \leq  n $,  
 +
form an orthonormal basis for $  \wedge  ^ {p} V $
 +
defines an inner product on $  \wedge  ^ {p} V $,  
 +
said to be induced from that of $  V $.  
 +
Let $  \mathop{\rm vol} $
 +
be the volume form determined by the chosen orientation. Then (extending $  \star $
 +
by linearity to all of $  \wedge  ^ {p} V $),
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751096.png" /></td> </tr></table>
+
$$
 +
\alpha \wedge \star \beta  = \langle  \alpha , \beta \rangle fnme vol
 +
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751097.png" />.
+
for all $  \alpha , \beta \in \wedge  ^ {p} V $.
  
The Hodge star operator on an oriented Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751098.png" /> is defined pointwise:
+
The Hodge star operator on an oriented Riemannian manifold $  M $
 +
is defined pointwise:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l05751099.png" /></td> </tr></table>
+
$$
 +
( \star \phi ) ( x)  = \star ( \phi ( x))
 +
$$
  
for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510100.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510101.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510102.png" />.
+
for a $  p $-
 +
form $  \phi $
 +
on $  M $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510103.png" /> be a complex vector space of (complex) dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510104.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510105.png" /> be the underlying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510106.png" />-dimensional real vector space. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510107.png" /> be a Hermitian inner product on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510108.png" />. Then the fundamental <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510110.png" />-form associated to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510111.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510112.png" />, provides an inner product on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510113.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510114.png" /> provides an orientation. In this case the Hodge <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510115.png" />-operator is defined relative to this inner product and this orientation. It is again extended pointwise to forms on complex manifolds with a Hermitian metric.
+
Let $  E $
 +
be a complex vector space of (complex) dimension $  n $
 +
and let $  E  ^  \prime  $
 +
be the underlying $  2n $-
 +
dimensional real vector space. Let $  h $
 +
be a Hermitian inner product on $  E $.  
 +
Then the fundamental $  2 $-
 +
form associated to $  h $,  
 +
$  \Omega = - (  \mathop{\rm Im}  h)/2 $,  
 +
provides an inner product on $  E  ^  \prime  $
 +
and $  \Omega  ^ {n} $
 +
provides an orientation. In this case the Hodge $  \star $-
 +
operator is defined relative to this inner product and this orientation. It is again extended pointwise to forms on complex manifolds with a Hermitian metric.
  
The Laplace operator of a Riemannian metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510116.png" /> can also be defined as the real symmetric second-order linear partial differential operator which annihilates the constant functions and for which the principal symbol (cf. [[Symbol of an operator|Symbol of an operator]]) is equal to the quadratic form on the cotangent bundle which is dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057510/l057510117.png" />.
+
The Laplace operator of a Riemannian metric $  g $
 +
can also be defined as the real symmetric second-order linear partial differential operator which annihilates the constant functions and for which the principal symbol (cf. [[Symbol of an operator|Symbol of an operator]]) is equal to the quadratic form on the cotangent bundle which is dual to $  g $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W.V.D. Hodge,  "The theory and application of harmonic integrals" , Cambridge Univ. Press  (1952)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W.V.D. Hodge,  "The theory and application of harmonic integrals" , Cambridge Univ. Press  (1952)</TD></TR></table>

Revision as of 22:15, 5 June 2020


Laplacian

The differential operator $ \Delta $ in $ \mathbf R ^ {n} $ defined by the formula

$$ \tag{1 } \Delta = \ \frac{\partial ^ {2} }{\partial x _ {1} ^ {2} } + \dots + \frac{\partial ^ {2} }{\partial x _ {n} ^ {2} } $$

(here $ x _ {1} \dots x _ {n} $ are coordinates in $ \mathbf R ^ {n} $), as well as some generalizations of it. The Laplace operator (1) is the simplest elliptic differential operator of the second order. The Laplace operator plays an important role in mathematical analysis, mathematical physics and geometry (see, for example, Laplace equation; Laplace–Beltrami equation; Harmonic function; Harmonic form). Let $ M $ be an $ n $- dimensional Riemannian manifold with metric

$$ \tag{2 } d s ^ {2} = g _ {ij} d x ^ {i} d x ^ {j} ,\ \ g _ {ij} = g _ {ji} , $$

let $ \| g ^ {ij} \| $ be the matrix inverse to the matrix $ \| g _ {ij} \| $ and let $ g = \mathop{\rm det} \| g _ {ij} \| $. Then the Laplace operator (or Laplace–Beltrami operator) on $ M $ with the Riemannian metric (2) has the form

$$ \tag{3 } \Delta u = - \frac{1}{\sqrt g} \frac \partial {\partial x ^ {i} } \left ( \sqrt g g ^ {ij} \frac{\partial u }{\partial x ^ {j} } \right ) , $$

where $ ( x ^ {1} \dots x ^ {n} ) $ are local coordinates on $ M $. (The operator (1) differs in sign from the Laplace operator on $ \mathbf R ^ {n} $ with the standard Euclidean metric $ d s ^ {2} = ( d x ^ {1} ) ^ {2} + \dots + ( d x ^ {n} ) ^ {2} $.)

A generalization of the operator (3) is the Laplace operator on differential forms (cf. also Differential form). Namely, in the space of exterior differential forms on $ M $ the Laplace operator has the form

$$ \tag{4 } \Delta = ( d + d ^ {*} ) ^ {2} = d d ^ {*} + d ^ {*} d , $$

where $ d $ is the operator of exterior differentiation of a form and $ d ^ {*} $ is the operator formally adjoint to $ d $, defined by means of the following inner product on smooth forms with compact support:

$$ \tag{5 } ( \alpha , \beta ) = \int\limits \alpha \wedge \star \beta , $$

where $ \star $ is the Hodge star operator induced by the metric (2) taking a $ p $- form into an $ ( n - p ) $- form. In (5) the forms $ \alpha $ and $ \beta $ are assumed to be real; on complex forms one must use the Hermitian extension of the inner product (5). The restriction of the operator (4) to $ 0 $- forms (that is, functions) is specified by (3). On $ p $- forms with an arbitrary integer $ p \geq 0 $ the Laplace operator in local coordinates can be written in the form

$$ \Delta ( a _ {i _ {1} \dots i _ {p} } d x ^ {i _ {1} } \wedge \dots \wedge d x ^ {i _ {p} } ) = $$

$$ = \ \left \{ - \nabla ^ {i} \nabla _ {i} a _ {i _ {1} \dots i _ {p} } + \sum _ {\nu = 1 } ^ { p } (- 1) ^ \nu R _ {i _ \nu } ^ {n} a _ {n i _ {1} \dots \widehat{i} _ \nu \dots i _ {p} } \right . + $$

$$ \left . + 2 \sum _ {\mu < \nu } (- 1) ^ {\mu + \nu } R _ {\cdot i _ \nu \cdot i _ \mu } ^ {n \cdot k \cdot } a _ {k n i _ {1} \dots \widehat{i} _ \mu \dots \widehat{i} _ \nu \dots i _ {p} } \right \} \times $$

$$ \times d x ^ {i _ {1} } \wedge \dots \wedge d x ^ {i _ {p} } . $$

Here $ \nabla ^ {i} $ and $ \nabla _ {i} $ are the covariant derivatives with respect to $ x ^ {i} $( cf. Covariant derivative), $ R _ {\cdot j \cdot l } ^ {i \cdot k \cdot } $ is the curvature tensor and $ R _ {k} ^ {n} = R _ {\cdot i \cdot k } ^ {n \cdot i \cdot } $ is the Ricci tensor.

Suppose one is given an arbitrary elliptic complex

$$ \tag{6 } \dots \rightarrow \Gamma ( E _ {p-} 1 ) \rightarrow ^ { d } \ \Gamma ( E _ {p} ) \rightarrow ^ { d } \Gamma ( E _ {p+} 1 ) \rightarrow \dots , $$

where the $ E _ {p} $ are real or complex vector bundles on $ M $ and the $ \Gamma ( E _ {p} ) $ are their spaces of smooth sections. Introducing a Hermitian metric in each vector bundle $ E _ {p} $ and also specifying the volume element on $ M $ in an arbitrary way, one can define a Hermitian inner product in the space of smooth sections of $ E _ {p} $ with compact support. Then operators $ d ^ {*} $ formally adjoint to the operator $ d $ are defined. The Laplace operator (4) is then constructed on each space $ \Gamma ( E _ {p} ) $ by formula (3). If for the complex (6) one takes the de Rham complex, then for a natural choice of the metric on the $ p $- forms and the volume element induced by the metric (2), one obtains for the Laplace operator of the de Rham complex the Laplace operator on forms, described above.

On a complex manifold $ M $, together with the de Rham complex there are also the elliptic complexes

$$ \tag{7 } \dots \rightarrow \Lambda ^ {p-} 1,q \mathop \rightarrow \limits ^ \partial \ \Lambda ^ {p,q} \mathop \rightarrow \limits ^ \partial \Lambda ^ {p+} 1,q \rightarrow \dots , $$

$$ \tag{8 } \dots \rightarrow \Lambda ^ {p,q-} 1 \mathop \rightarrow \limits ^ { {\overline \partial \; }} \Lambda ^ {p,q} \mathop \rightarrow \limits ^ { {\overline \partial \; }} \Lambda ^ {p,q + 1 } \rightarrow \dots , $$

where $ \Lambda ^ {p,q} $ is the space of smooth forms of type $ ( p , q ) $ on $ M $. Introducing a Hermitian structure in the tangent bundle on $ M $, one can construct the Laplace operator (4) of the de Rham complex and the Laplace operators of the complexes (7) and (8):

$$ \square = \partial \partial ^ {*} + \partial ^ {*} \partial , $$

$$ \overline \square \; = {\overline \partial \; } {\overline \partial \; {} ^ {*} } + \overline \partial \; {} ^ {*} \overline \partial \; . $$

Each of these operators takes the space $ \Lambda ^ {p,q} $ into itself. If $ M $ is a Kähler manifold and the Hermitian structure on $ M $ is induced by the Kähler metric, then

$$ \Delta = 2 \square = 2 \overline \square \; . $$

An important fact, which determines the role of the Laplace operator of an elliptic complex, is the existence in the case of a compact manifold $ M $ of the orthogonal Weyl decomposition:

$$ \tag{9 } \Gamma ( E _ {p} ) = d ( \Gamma ( E _ {p-} 1 ) ) \oplus {\mathcal H} ^ {p} ( E) \oplus d ^ {*} ( \Gamma ( E _ {p+} 1 ) ) . $$

In this decomposition $ {\mathcal H} ^ {p} ( E) = \mathop{\rm ker} \Delta \mid _ {\Gamma ( E _ {p} ) } $, where $ \Delta $ is the Laplace operator of the complex (6), so that $ {\mathcal H} ^ {p} ( E) $ is the space of "harmonic" sections of $ E _ {p} $( in the case of the de Rham complex, this is the space of all harmonic forms of degree $ p $). The direct sum of the first two terms on the right-hand side of (9) is equal to $ \mathop{\rm Ker} d \mid _ {\Gamma ( E _ {p} ) } $, and the direct sum of the last two terms coincides with $ \mathop{\rm Ker} d ^ {*} \mid _ {\Gamma ( E _ {p} ) } $. In particular, the decomposition (9) gives an isomorphism between the cohomology space of the complex (6) in the term $ \Gamma ( E _ {p} ) $ and the space of harmonic sections $ {\mathcal H} ^ {p} ( E) $.

References

[1] G. de Rham, "Differentiable manifolds" , Springer (1984) (Translated from French)
[2] S.S. Chern, "Complex manifolds" , Univ. Recife (1959)
[3] R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)

Comments

Let $ V $ be a finite-dimensional vector space with an inner product $ \langle , \rangle $ and suppose an orientation is given on $ V $. Choose an orthonormal basis $ ( e _ {1} \dots e _ {n} ) $ of $ V $ in the given orientation class. The Hodge $ \star $- operator (Hodge star operator, star operator)

$$ \star : \wedge ^ {p} V \rightarrow \wedge ^ {n - p } V $$

is defined by

$$ \star ( e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {p} } ) = \ \pm e _ {j _ {1} } \wedge \dots \wedge e _ {j _ {n - p } } , $$

where $ \{ i _ {1} \dots i _ {p} ; j _ {1} \dots j _ {n - p } \} = \{ 1 \dots n \} $ and the plus (respectively, minus) sign is taken depending on whether the permutation $ \{ i _ {1} \dots i _ {p} , j _ {1} \dots j _ {n - p } \} $ of $ \{ 1 \dots n \} $ is even or odd.

Declaring that the $ e _ {i _ {1} } \wedge \dots \wedge e _ {i _ {p} } $, $ i _ {1} < \dots < i _ {p} \leq n $, form an orthonormal basis for $ \wedge ^ {p} V $ defines an inner product on $ \wedge ^ {p} V $, said to be induced from that of $ V $. Let $ \mathop{\rm vol} $ be the volume form determined by the chosen orientation. Then (extending $ \star $ by linearity to all of $ \wedge ^ {p} V $),

$$ \alpha \wedge \star \beta = \langle \alpha , \beta \rangle fnme vol $$

for all $ \alpha , \beta \in \wedge ^ {p} V $.

The Hodge star operator on an oriented Riemannian manifold $ M $ is defined pointwise:

$$ ( \star \phi ) ( x) = \star ( \phi ( x)) $$

for a $ p $- form $ \phi $ on $ M $.

Let $ E $ be a complex vector space of (complex) dimension $ n $ and let $ E ^ \prime $ be the underlying $ 2n $- dimensional real vector space. Let $ h $ be a Hermitian inner product on $ E $. Then the fundamental $ 2 $- form associated to $ h $, $ \Omega = - ( \mathop{\rm Im} h)/2 $, provides an inner product on $ E ^ \prime $ and $ \Omega ^ {n} $ provides an orientation. In this case the Hodge $ \star $- operator is defined relative to this inner product and this orientation. It is again extended pointwise to forms on complex manifolds with a Hermitian metric.

The Laplace operator of a Riemannian metric $ g $ can also be defined as the real symmetric second-order linear partial differential operator which annihilates the constant functions and for which the principal symbol (cf. Symbol of an operator) is equal to the quadratic form on the cotangent bundle which is dual to $ g $.

References

[a1] W.V.D. Hodge, "The theory and application of harmonic integrals" , Cambridge Univ. Press (1952)
How to Cite This Entry:
Laplace operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laplace_operator&oldid=47581
This article was adapted from an original article by M.A. Shubin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article