|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | l1100202.png |
| + | $#A+1 = 158 n = 0 |
| + | $#C+1 = 158 : ~/encyclopedia/old_files/data/L110/L.1100020 \BMI l\EMI\AAhgroup, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''lattice-ordered group'' | | ''lattice-ordered group'' |
| | | |
− | A partially ordered group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100202.png" /> (cf. [[O-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100203.png" />-group]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100204.png" /> is a [[Lattice|lattice]] (cf. also [[Lattice-ordered group|Lattice-ordered group]]). It is useful to consider the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100205.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100206.png" /> as an [[Algebraic system|algebraic system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100207.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100208.png" /> is a [[Group|group]] with identity element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l1100209.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002010.png" /> is a lattice with join and meet operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002011.png" /> in the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002012.png" />. The following identities hold in any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002013.png" />-group: | + | A partially ordered group $ \{ G; \cdot, \cle \} $( |
| + | cf. [[O-group| $ o $- |
| + | group]]) such that $ \{ G; \cle \} $ |
| + | is a [[Lattice|lattice]] (cf. also [[Lattice-ordered group|Lattice-ordered group]]). It is useful to consider the $ l $- |
| + | group $ G $ |
| + | as an [[Algebraic system|algebraic system]] $ \{ G; \cdot,e, ^ {- 1 } , \lor, \wedge \} $, |
| + | where $ \{ G; \cdot,e, ^ {- 1 } \} $ |
| + | is a [[Group|group]] with identity element $ e $, |
| + | and $ \{ G; \lor, \wedge \} $ |
| + | is a lattice with join and meet operations $ \lor, \wedge $ |
| + | in the lattice $ \{ G; \cle \} $. |
| + | The following identities hold in any $ l $- |
| + | group: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002014.png" /></td> </tr></table>
| + | $$ |
| + | x ( y \lor z ) t = xyt \lor xzt, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002015.png" /></td> </tr></table>
| + | $$ |
| + | x ( y \wedge z ) t = xyt \wedge xzt. |
| + | $$ |
| | | |
− | The lattice of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002016.png" />-group is distributive (cf. [[Distributive lattice|Distributive lattice]]). The class of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002017.png" />-groups is a variety of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002018.png" /> (cf. [[L-variety|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002019.png" />-variety]]); it is locally closed, and closed under taking direct and Cartesian products, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002021.png" />-subgroups (i.e., subgroups that are sublattices), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002023.png" />-homomorphisms (i.e., homomorphisms that preserve the group operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002024.png" /> and the lattice operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002025.png" />). | + | The lattice of an $ l $- |
| + | group is distributive (cf. [[Distributive lattice|Distributive lattice]]). The class of all $ l $- |
| + | groups is a variety of signature $ \{ \cdot,e, ^ {- 1 } , \lor, \wedge \} $( |
| + | cf. [[L-variety| $ l $- |
| + | variety]]); it is locally closed, and closed under taking direct and Cartesian products, $ l $- |
| + | subgroups (i.e., subgroups that are sublattices), and $ l $- |
| + | homomorphisms (i.e., homomorphisms that preserve the group operation $ \cdot $ |
| + | and the lattice operations $ \lor, \wedge $). |
| | | |
− | The most important examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002027.png" />-groups are: 1) the additive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002028.png" /> of the set of real-valued continuous functions defined on the real number set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002029.png" />, with the order: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002030.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002031.png" />, if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002032.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002033.png" />; and 2) the automorphism group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002034.png" /> of a totally ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002035.png" /> with order: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002036.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002037.png" />, if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002038.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002039.png" />. | + | The most important examples of $ l $- |
| + | groups are: 1) the additive group $ C [ \mathbf R ] $ |
| + | of the set of real-valued continuous functions defined on the real number set $ \mathbf R $, |
| + | with the order: $ f \cle g $, |
| + | for $ f,g \in C [ \mathbf R ] $, |
| + | if and only if $ f ( x ) \cle g ( x ) $ |
| + | for all $ x \in \mathbf R $; |
| + | and 2) the automorphism group $ { \mathop{\rm Aut} } ( X ) $ |
| + | of a totally ordered set $ X $ |
| + | with order: $ \varphi \cle \psi $, |
| + | for $ \varphi, \psi \in { \mathop{\rm Aut} } ( X ) $, |
| + | if and only if $ x \varphi \cle x \psi $ |
| + | for all $ x \in X $. |
| | | |
− | The theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002040.png" />-groups is used in the study of the structure of ordered vector spaces, function spaces and infinite groups, in particular for the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002041.png" />. | + | The theory of $ l $- |
| + | groups is used in the study of the structure of ordered vector spaces, function spaces and infinite groups, in particular for the groups $ { \mathop{\rm Aut} } ( X ) $. |
| | | |
− | The most important fact of the theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002042.png" />-groups is that every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002043.png" />-group is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002044.png" />-isomorphic to some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002045.png" />-subgroup of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002046.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002047.png" /> for a suitable totally ordered <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002048.png" />. Using this theorem, it can be proved that every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002049.png" />-group is imbeddable in a divisible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002050.png" />-group as well as in a simple group. The class of groups that may be endowed with the structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002051.png" />-group is large. E.g., it contains the classes of Abelian torsion-free groups, locally nilpotent torsion-free groups, and many others. There are torsion-free groups that cannot be imbedded in any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002052.png" />-group. | + | The most important fact of the theory of $ l $- |
| + | groups is that every $ l $- |
| + | group is $ l $- |
| + | isomorphic to some $ l $- |
| + | subgroup of the $ l $- |
| + | group $ { \mathop{\rm Aut} } ( X ) $ |
| + | for a suitable totally ordered $ X $. |
| + | Using this theorem, it can be proved that every $ l $- |
| + | group is imbeddable in a divisible $ l $- |
| + | group as well as in a simple group. The class of groups that may be endowed with the structure of an $ l $- |
| + | group is large. E.g., it contains the classes of Abelian torsion-free groups, locally nilpotent torsion-free groups, and many others. There are torsion-free groups that cannot be imbedded in any $ l $- |
| + | group. |
| | | |
− | Every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002053.png" />-group is a torsion-free group and has a decomposition property: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002055.png" /> for positive elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002056.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002058.png" />. | + | Every $ l $- |
| + | group is a torsion-free group and has a decomposition property: if $ a \cle b _ {1} \dots b _ {n} $ |
| + | for positive elements $ a,b _ {1} \dots b _ {n} $, |
| + | then $ a = c _ {1} \dots c _ {n} $, |
| + | where $ e \cle c _ {i} \cle b _ {i} $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002059.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002060.png" />-group and put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002061.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002063.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002064.png" />. Then | + | Let $ G $ |
| + | be an $ l $- |
| + | group and put $ x ^ {+} = x \lor e $, |
| + | $ x ^ {-} = x \wedge e $, |
| + | $ | x | = x \lor x ^ {- 1 } $ |
| + | for $ x \in G $. |
| + | Then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002065.png" /></td> </tr></table>
| + | $$ |
| + | x = x ^ {+} x ^ {-} , x ^ {+} \wedge ( x ^ {-} ) ^ {- 1 } = e, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002066.png" /></td> </tr></table>
| + | $$ |
| + | \left | x \right | = x ^ {+} ( x ^ {-} ) ^ {- 1 } , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002067.png" /></td> </tr></table>
| + | $$ |
| + | \left | {x \lor y } \right | \cle \left | x \right | \lor \left | y \right | \cle \left | x \right | \left | y \right | , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002068.png" /></td> </tr></table>
| + | $$ |
| + | \left | {xy } \right | \cle \left | x \right | \left | y \right | \left | x \right | , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002069.png" /></td> </tr></table>
| + | $$ |
| + | ( x \lor y ) ^ {- 1 } = x ^ {- 1 } \wedge y ^ {- 1 } . |
| + | $$ |
| | | |
− | Elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002070.png" /> are called orthogonal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002072.png" />. Orthogonal elements commute. | + | Elements $ x,y \in G $ |
| + | are called orthogonal if $ | x | \wedge | y | = e $. |
| + | Orthogonal elements commute. |
| | | |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002073.png" />-group may be described by its positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002075.png" />, for which the following properties hold: | + | An $ l $- |
| + | group may be described by its positive cone $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $, |
| + | for which the following properties hold: |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002076.png" />; | + | 1) $ P \cdot P \subseteq P $; |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002077.png" />; | + | 2) $ P \cap P = \{ e \} $; |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002078.png" />; | + | 3) $ \forall x: x ^ {- 1 } Px \subseteq P $; |
| | | |
− | 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002079.png" /> is a lattice respect with the partial order induced from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002080.png" />. If, in a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002081.png" />, a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002082.png" /> with the properties 1)–4) can be found, then it is possible to turn <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002083.png" /> in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002084.png" />-group by setting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002085.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002086.png" />. It is correct to identify the order in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002087.png" />-group with its positive cone. The notation "l-group" is connected with the notation for right-ordered groups (cf. [[Ro-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002088.png" />-group]]). In particular, the positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002089.png" /> of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002090.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002091.png" /> is the intersection of a suitable set of right orders <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002092.png" /> on the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002093.png" />. | + | 4) $ P $ |
| + | is a lattice respect with the partial order induced from $ G $. |
| + | If, in a group $ G $, |
| + | a set $ P $ |
| + | with the properties 1)–4) can be found, then it is possible to turn $ G $ |
| + | in an $ l $- |
| + | group by setting $ x \cle y $ |
| + | if and only if $ yx ^ {- 1 } \in P $. |
| + | It is correct to identify the order in an $ l $- |
| + | group with its positive cone. The notation "l-group" is connected with the notation for right-ordered groups (cf. [[Ro-group| $ ro $- |
| + | group]]). In particular, the positive cone $ P ( G ) $ |
| + | of any $ l $- |
| + | group $ G $ |
| + | is the intersection of a suitable set of right orders $ P _ \alpha $ |
| + | on the group $ G $. |
| | | |
− | It is useful to describe the structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002094.png" />-group in terms of convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002095.png" />-subgroups (cf. [[Convex subgroup|Convex subgroup]]). A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002096.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002097.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l11002098.png" /> is called a convex subgroup if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020100.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020101.png" />: | + | It is useful to describe the structure of an $ l $- |
| + | group in terms of convex $ l $- |
| + | subgroups (cf. [[Convex subgroup|Convex subgroup]]). A subgroup $ H $ |
| + | of an $ l $- |
| + | group $ G $ |
| + | is called a convex subgroup if for all $ x,y \in H $, |
| + | $ z \in G $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020102.png" /></td> </tr></table>
| + | $$ |
| + | x \cle z \cle y \Rightarrow z \in H. |
| + | $$ |
| | | |
− | The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020103.png" /> of all convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020104.png" />-subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020105.png" /> is a complete sublattice of the lattice of all subgroups (cf. [[Complete lattice|Complete lattice]]). A subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020106.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020107.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020108.png" /> is the kernel of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020109.png" />-homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020110.png" /> if and only if it is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020113.png" />-ideal, i.e., a normal convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020114.png" />-subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020115.png" />. | + | The set $ {\mathcal C} ( G ) $ |
| + | of all convex $ l $- |
| + | subgroups of $ G $ |
| + | is a complete sublattice of the lattice of all subgroups (cf. [[Complete lattice|Complete lattice]]). A subset $ N $ |
| + | of an $ l $- |
| + | group $ G $ |
| + | is the kernel of an $ l $- |
| + | homomorphism of $ G $ |
| + | if and only if it is an $ l $- |
| + | ideal, i.e., a normal convex $ l $- |
| + | subgroup of $ G $. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020116.png" /> is a subset of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020117.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020118.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020119.png" /> is called a polar. Every polar in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020121.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020122.png" /> is a convex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020123.png" />-subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020124.png" />. The following properties hold for polars <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020125.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020126.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020127.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020128.png" />: | + | If $ M $ |
| + | is a subset of an $ l $- |
| + | group $ G $, |
| + | then the set $ M ^ \perp = \{ {x \in G } : {| x | \wedge | m | = e \textrm{ for all } m \in M } \} $ |
| + | is called a polar. Every polar in a $ l $- |
| + | group $ G $ |
| + | is a convex $ l $- |
| + | subgroup of $ G $. |
| + | The following properties hold for polars $ M $ |
| + | and $ N $ |
| + | of an $ l $- |
| + | group $ G $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020129.png" /></td> </tr></table>
| + | $$ |
| + | M ^ {\perp \perp \perp } = M ^ \perp , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020130.png" /></td> </tr></table>
| + | $$ |
| + | M \subseteq N \Rightarrow M ^ \perp \supseteq N ^ \perp , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020131.png" /></td> </tr></table>
| + | $$ |
| + | M ^ \perp \cap N ^ \perp = ( M \cup N ) ^ \perp , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020132.png" /></td> </tr></table>
| + | $$ |
| + | ( M ^ \perp \cup N ^ \perp ) ^ \perp = M ^ {\perp \perp } \cap N ^ {\perp \perp } . |
| + | $$ |
| | | |
− | The set of all polars of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020133.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020134.png" /> is a [[Boolean algebra|Boolean algebra]], but not a sublattice of the lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020135.png" />. The properties and the significance of polars are well investigated. | + | The set of all polars of an $ l $- |
| + | group $ G $ |
| + | is a [[Boolean algebra|Boolean algebra]], but not a sublattice of the lattice $ {\mathcal C} ( G ) $. |
| + | The properties and the significance of polars are well investigated. |
| | | |
− | An [[O-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020136.png" />-group]] is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020137.png" />-group with a total order (cf. also [[Totally ordered group|Totally ordered group]]). If an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020138.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020139.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020140.png" />-subgroup of the Cartesian product of totally ordered groups, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020141.png" /> is called a representable group. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020142.png" /> of representable groups has been well investigated. It is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020143.png" />-variety given by the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020144.png" /> in the variety of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020145.png" />-groups. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020146.png" />-group is representable if and only if every polar of it is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020147.png" />-ideal. The positive cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020148.png" /> of a representable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020149.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020150.png" /> is the intersection of all total orders of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020151.png" /> restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020152.png" />. Every locally nilpotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020153.png" />-group is representable. | + | An [[O-group| $ o $- |
| + | group]] is an $ l $- |
| + | group with a total order (cf. also [[Totally ordered group|Totally ordered group]]). If an $ l $- |
| + | group $ G $ |
| + | is an $ l $- |
| + | subgroup of the Cartesian product of totally ordered groups, then $ G $ |
| + | is called a representable group. The class $ {\mathcal R} $ |
| + | of representable groups has been well investigated. It is the $ l $- |
| + | variety given by the identity $ ( x \wedge y ^ {- 1 } x ^ {- 1 } y ) \lor e = e $ |
| + | in the variety of all $ l $- |
| + | groups. An $ l $- |
| + | group is representable if and only if every polar of it is an $ l $- |
| + | ideal. The positive cone $ P $ |
| + | of a representable $ l $- |
| + | group $ G $ |
| + | is the intersection of all total orders of $ G $ |
| + | restricted to $ P $. |
| + | Every locally nilpotent $ l $- |
| + | group is representable. |
| | | |
− | An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020154.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020155.png" /> is called Archimedean if the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020157.png" /> holds for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020158.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020159.png" /> for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020160.png" />. Every Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020161.png" />-group is Abelian (cf. [[Abelian group|Abelian group]]) and it is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020162.png" />-subgroup of the Cartesian product of copies of the totally ordered additive group of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020163.png" />. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020164.png" /> of Archimedean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020165.png" />-groups is closed under formation of subgroups, direct and Cartesian products. It is not closed under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020166.png" />-homomorphisms and is not an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020167.png" />-variety. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020168.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020169.png" /> of real-valued functions on a compact topologic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l110/l110020/l110020170.png" /> is Archimedean. | + | An $ l $- |
| + | group $ G $ |
| + | is called Archimedean if the equality $ b = e $ |
| + | holds for all $ a,b \in G $ |
| + | such that $ a ^ {n} \leq b $ |
| + | for any integer $ n $. |
| + | Every Archimedean $ l $- |
| + | group is Abelian (cf. [[Abelian group|Abelian group]]) and it is an $ l $- |
| + | subgroup of the Cartesian product of copies of the totally ordered additive group of real numbers $ \mathbf R $. |
| + | The class $ {\mathcal A} $ |
| + | of Archimedean $ l $- |
| + | groups is closed under formation of subgroups, direct and Cartesian products. It is not closed under $ l $- |
| + | homomorphisms and is not an $ l $- |
| + | variety. The $ l $- |
| + | group $ C [ X, \mathbf R ] $ |
| + | of real-valued functions on a compact topologic space $ X $ |
| + | is Archimedean. |
| | | |
| This article extends and complements the article [[Lattice-ordered group|Lattice-ordered group]] (Volume 5). | | This article extends and complements the article [[Lattice-ordered group|Lattice-ordered group]] (Volume 5). |
lattice-ordered group
A partially ordered group $ \{ G; \cdot, \cle \} $(
cf. $ o $-
group) such that $ \{ G; \cle \} $
is a lattice (cf. also Lattice-ordered group). It is useful to consider the $ l $-
group $ G $
as an algebraic system $ \{ G; \cdot,e, ^ {- 1 } , \lor, \wedge \} $,
where $ \{ G; \cdot,e, ^ {- 1 } \} $
is a group with identity element $ e $,
and $ \{ G; \lor, \wedge \} $
is a lattice with join and meet operations $ \lor, \wedge $
in the lattice $ \{ G; \cle \} $.
The following identities hold in any $ l $-
group:
$$
x ( y \lor z ) t = xyt \lor xzt,
$$
$$
x ( y \wedge z ) t = xyt \wedge xzt.
$$
The lattice of an $ l $-
group is distributive (cf. Distributive lattice). The class of all $ l $-
groups is a variety of signature $ \{ \cdot,e, ^ {- 1 } , \lor, \wedge \} $(
cf. $ l $-
variety); it is locally closed, and closed under taking direct and Cartesian products, $ l $-
subgroups (i.e., subgroups that are sublattices), and $ l $-
homomorphisms (i.e., homomorphisms that preserve the group operation $ \cdot $
and the lattice operations $ \lor, \wedge $).
The most important examples of $ l $-
groups are: 1) the additive group $ C [ \mathbf R ] $
of the set of real-valued continuous functions defined on the real number set $ \mathbf R $,
with the order: $ f \cle g $,
for $ f,g \in C [ \mathbf R ] $,
if and only if $ f ( x ) \cle g ( x ) $
for all $ x \in \mathbf R $;
and 2) the automorphism group $ { \mathop{\rm Aut} } ( X ) $
of a totally ordered set $ X $
with order: $ \varphi \cle \psi $,
for $ \varphi, \psi \in { \mathop{\rm Aut} } ( X ) $,
if and only if $ x \varphi \cle x \psi $
for all $ x \in X $.
The theory of $ l $-
groups is used in the study of the structure of ordered vector spaces, function spaces and infinite groups, in particular for the groups $ { \mathop{\rm Aut} } ( X ) $.
The most important fact of the theory of $ l $-
groups is that every $ l $-
group is $ l $-
isomorphic to some $ l $-
subgroup of the $ l $-
group $ { \mathop{\rm Aut} } ( X ) $
for a suitable totally ordered $ X $.
Using this theorem, it can be proved that every $ l $-
group is imbeddable in a divisible $ l $-
group as well as in a simple group. The class of groups that may be endowed with the structure of an $ l $-
group is large. E.g., it contains the classes of Abelian torsion-free groups, locally nilpotent torsion-free groups, and many others. There are torsion-free groups that cannot be imbedded in any $ l $-
group.
Every $ l $-
group is a torsion-free group and has a decomposition property: if $ a \cle b _ {1} \dots b _ {n} $
for positive elements $ a,b _ {1} \dots b _ {n} $,
then $ a = c _ {1} \dots c _ {n} $,
where $ e \cle c _ {i} \cle b _ {i} $.
Let $ G $
be an $ l $-
group and put $ x ^ {+} = x \lor e $,
$ x ^ {-} = x \wedge e $,
$ | x | = x \lor x ^ {- 1 } $
for $ x \in G $.
Then
$$
x = x ^ {+} x ^ {-} , x ^ {+} \wedge ( x ^ {-} ) ^ {- 1 } = e,
$$
$$
\left | x \right | = x ^ {+} ( x ^ {-} ) ^ {- 1 } ,
$$
$$
\left | {x \lor y } \right | \cle \left | x \right | \lor \left | y \right | \cle \left | x \right | \left | y \right | ,
$$
$$
\left | {xy } \right | \cle \left | x \right | \left | y \right | \left | x \right | ,
$$
$$
( x \lor y ) ^ {- 1 } = x ^ {- 1 } \wedge y ^ {- 1 } .
$$
Elements $ x,y \in G $
are called orthogonal if $ | x | \wedge | y | = e $.
Orthogonal elements commute.
An $ l $-
group may be described by its positive cone $ P = P ( G ) = \{ {x \in G } : {x \cge e } \} $,
for which the following properties hold:
1) $ P \cdot P \subseteq P $;
2) $ P \cap P = \{ e \} $;
3) $ \forall x: x ^ {- 1 } Px \subseteq P $;
4) $ P $
is a lattice respect with the partial order induced from $ G $.
If, in a group $ G $,
a set $ P $
with the properties 1)–4) can be found, then it is possible to turn $ G $
in an $ l $-
group by setting $ x \cle y $
if and only if $ yx ^ {- 1 } \in P $.
It is correct to identify the order in an $ l $-
group with its positive cone. The notation "l-group" is connected with the notation for right-ordered groups (cf. $ ro $-
group). In particular, the positive cone $ P ( G ) $
of any $ l $-
group $ G $
is the intersection of a suitable set of right orders $ P _ \alpha $
on the group $ G $.
It is useful to describe the structure of an $ l $-
group in terms of convex $ l $-
subgroups (cf. Convex subgroup). A subgroup $ H $
of an $ l $-
group $ G $
is called a convex subgroup if for all $ x,y \in H $,
$ z \in G $:
$$
x \cle z \cle y \Rightarrow z \in H.
$$
The set $ {\mathcal C} ( G ) $
of all convex $ l $-
subgroups of $ G $
is a complete sublattice of the lattice of all subgroups (cf. Complete lattice). A subset $ N $
of an $ l $-
group $ G $
is the kernel of an $ l $-
homomorphism of $ G $
if and only if it is an $ l $-
ideal, i.e., a normal convex $ l $-
subgroup of $ G $.
If $ M $
is a subset of an $ l $-
group $ G $,
then the set $ M ^ \perp = \{ {x \in G } : {| x | \wedge | m | = e \textrm{ for all } m \in M } \} $
is called a polar. Every polar in a $ l $-
group $ G $
is a convex $ l $-
subgroup of $ G $.
The following properties hold for polars $ M $
and $ N $
of an $ l $-
group $ G $:
$$
M ^ {\perp \perp \perp } = M ^ \perp ,
$$
$$
M \subseteq N \Rightarrow M ^ \perp \supseteq N ^ \perp ,
$$
$$
M ^ \perp \cap N ^ \perp = ( M \cup N ) ^ \perp ,
$$
$$
( M ^ \perp \cup N ^ \perp ) ^ \perp = M ^ {\perp \perp } \cap N ^ {\perp \perp } .
$$
The set of all polars of an $ l $-
group $ G $
is a Boolean algebra, but not a sublattice of the lattice $ {\mathcal C} ( G ) $.
The properties and the significance of polars are well investigated.
An $ o $-
group is an $ l $-
group with a total order (cf. also Totally ordered group). If an $ l $-
group $ G $
is an $ l $-
subgroup of the Cartesian product of totally ordered groups, then $ G $
is called a representable group. The class $ {\mathcal R} $
of representable groups has been well investigated. It is the $ l $-
variety given by the identity $ ( x \wedge y ^ {- 1 } x ^ {- 1 } y ) \lor e = e $
in the variety of all $ l $-
groups. An $ l $-
group is representable if and only if every polar of it is an $ l $-
ideal. The positive cone $ P $
of a representable $ l $-
group $ G $
is the intersection of all total orders of $ G $
restricted to $ P $.
Every locally nilpotent $ l $-
group is representable.
An $ l $-
group $ G $
is called Archimedean if the equality $ b = e $
holds for all $ a,b \in G $
such that $ a ^ {n} \leq b $
for any integer $ n $.
Every Archimedean $ l $-
group is Abelian (cf. Abelian group) and it is an $ l $-
subgroup of the Cartesian product of copies of the totally ordered additive group of real numbers $ \mathbf R $.
The class $ {\mathcal A} $
of Archimedean $ l $-
groups is closed under formation of subgroups, direct and Cartesian products. It is not closed under $ l $-
homomorphisms and is not an $ l $-
variety. The $ l $-
group $ C [ X, \mathbf R ] $
of real-valued functions on a compact topologic space $ X $
is Archimedean.
This article extends and complements the article Lattice-ordered group (Volume 5).
References
[a1] | L. Fuchs, "Partially ordered algebraic systems" , Pergamon (1963) |
[a2] | A. Bigard, K. Keimel, S. Wolfenstein, "Groupes et anneaux rétiqulés" , Springer (1977) |
[a3] | "Lattice-ordered groups: advances and techniques" A.M.W. Glass (ed.) W.Ch. Holland (ed.) , Kluwer Acad. Publ. (1989) |
[a4] | V.M. Kopytov, N.Ya. Medvedev, "The theory of lattice-ordered groups" , Kluwer Acad. Publ. (1994) (In Russian) |