Namespaces
Variants
Actions

Difference between revisions of "Klein-Gordon equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
 
Line 1: Line 1:
The relativistically-invariant quantum equation describing spinless scalar or pseudo-scalar particles, for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554801.png" />-, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554802.png" />-mesons. The equation was established by O. Klein [[#References|[1]]] and somewhat later by V.A. Fock [V.A. Fok] as a wave equation under the conditions of cyclicity in the fifth coordinate and was shortly afterwards deduced by several authors (for example, W. Gordon [[#References|[2]]]) without this requirement on the fifth coordinate.
+
<!--
 +
k0554801.png
 +
$#A+1 = 40 n = 0
 +
$#C+1 = 40 : ~/encyclopedia/old_files/data/K055/K.0505480 Klein\ANDGordon equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The subsequent application of the Klein–Gordon equation as a relativistic quantum equation proved possible in [[Quantum field theory|quantum field theory]] but not in quantum mechanics. In [[#References|[3]]] an interpretation of the Klein–Gordon equation was given as an equation for fields of particles of zero spin. The Klein–Gordon equation is applied in the description of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554803.png" />-mesons and corresponding fields; it plays the role of one of the fundamental equations of quantum field theory.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
The relativistically-invariant quantum equation describing spinless scalar or pseudo-scalar particles, for example,  $  \pi $-,
 +
and  $  K $-
 +
mesons. The equation was established by O. Klein [[#References|[1]]] and somewhat later by V.A. Fock [V.A. Fok] as a wave equation under the conditions of cyclicity in the fifth coordinate and was shortly afterwards deduced by several authors (for example, W. Gordon [[#References|[2]]]) without this requirement on the fifth coordinate.
 +
 
 +
The subsequent application of the Klein–Gordon equation as a relativistic quantum equation proved possible in [[Quantum field theory|quantum field theory]] but not in quantum mechanics. In [[#References|[3]]] an interpretation of the Klein–Gordon equation was given as an equation for fields of particles of zero spin. The Klein–Gordon equation is applied in the description of $  \pi $-
 +
mesons and corresponding fields; it plays the role of one of the fundamental equations of quantum field theory.
  
 
The Klein–Gordon equation is a linear homogeneous second-order partial differential equation with constant coefficients:
 
The Klein–Gordon equation is a linear homogeneous second-order partial differential equation with constant coefficients:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554804.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\left (
 +
 
 +
\frac{\partial  ^ {2} }{\partial  x  ^ {2} }
 +
+
 +
 
 +
\frac{\partial  ^ {2} }{\partial  y  ^ {2} }
 +
+
 +
 
 +
\frac{\partial  ^ {2} }{\partial  z  ^ {2} }
 +
-
 +
 
 +
\frac{\partial  ^ {2} }{c  ^ {2} \partial  t  ^ {2} }
 +
-
 +
\mu  ^ {2}
 +
\right )
 +
\phi  = 0 ,
 +
$$
 +
 
 +
where  $  \phi ( \mathbf x , t ) $
 +
is a (pseudo-) scalar function, in the general case — complex,  $  \mu = m c / \hbar $
 +
and  $  m $
 +
is the rest mass of the particle. If  $  \phi $
 +
is a real function, then the Klein–Gordon equation describes neutral (pseudo-) scalar particles, while when  $  \phi $
 +
is complex it describes charged particles.
 +
 
 +
In the latter case equation (1) is supplemented by the equation for the complex-conjugate scalar function  $  \phi  ^ {*} $:
 +
 
 +
$$ \tag{2 }
 +
\left (
 +
 
 +
\frac{\partial  ^ {2} }{\partial  x  ^ {2} }
 +
+
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554805.png" /> is a (pseudo-) scalar function, in the general case — complex, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554806.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554807.png" /> is the rest mass of the particle. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554808.png" /> is a real function, then the Klein–Gordon equation describes neutral (pseudo-) scalar particles, while when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k0554809.png" /> is complex it describes charged particles.
+
\frac{\partial  ^ {2} }{\partial  y  ^ {2} }
 +
+
  
In the latter case equation (1) is supplemented by the equation for the complex-conjugate scalar function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548010.png" />:
+
\frac{\partial  ^ {2} }{\partial  z  ^ {2} }
 +
-
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
\frac{\partial  ^ {2} }{c  ^ {2} \partial  t  ^ {2} }
 +
-
 +
\mu  ^ {2}
 +
\right )
 +
\phi  ^ {*}  = 0 .
 +
$$
  
The interaction of (pseudo-) scalar particles with the electromagnetic field is described by the minimal substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548012.png" />. Each component of the wave function of particles of any spin also satisfies the Klein–Gordon equation, but only for the case where the spin is 0 is the function invariant with respect to the Lorentz–Poincaré group.
+
The interaction of (pseudo-) scalar particles with the electromagnetic field is described by the minimal substitution $  \partial  / {\partial  x  ^  \alpha  } \rightarrow ( \partial  / {\partial  x  ^  \alpha  } ) - i e A _  \alpha  / \hbar $.  
 +
Each component of the wave function of particles of any spin also satisfies the Klein–Gordon equation, but only for the case where the spin is 0 is the function invariant with respect to the Lorentz–Poincaré group.
  
The Klein–Gordon equation can be obtained by means of the relationship between the energy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548013.png" /> and the momentum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548014.png" /> of the particle in special relativity theory,
+
The Klein–Gordon equation can be obtained by means of the relationship between the energy $  E $
 +
and the momentum $  \mathbf p $
 +
of the particle in special relativity theory,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548015.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{1}{c  ^ {2} }
 +
 
 +
E  ^ {2} - p _ {x}  ^ {2} -
 +
p _ {y}  ^ {2} - p _ {z}  ^ {2}  = \
 +
m  ^ {2} c  ^ {2} ,
 +
$$
  
 
by replacing quantities by operators (see [[#References|[4]]], [[#References|[5]]]):
 
by replacing quantities by operators (see [[#References|[4]]], [[#References|[5]]]):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548016.png" /></td> </tr></table>
+
$$
 +
E  \rightarrow  -  
 +
\frac \hbar {i}
 +
 
 +
\frac \partial {\partial  t }
 +
,\ \
 +
\mathbf p  \rightarrow 
 +
\frac \hbar {i}
 +
 
 +
\frac \partial {\partial  \mathbf x }
 +
.
 +
$$
  
 
As for all relativistic equations, the Klein–Gordon equation can be expressed in the form of the [[Dirac equation|Dirac equation]], that is, it can be reduced to a first-order linear equation:
 
As for all relativistic equations, the Klein–Gordon equation can be expressed in the form of the [[Dirac equation|Dirac equation]], that is, it can be reduced to a first-order linear equation:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\left (
 +
\Gamma  ^  \alpha
 +
 
 +
\frac \partial {\partial  x  ^  \alpha  }
 +
 
 +
- \mu
 +
\right )
 +
\psi  = 0 ,
 +
$$
  
where the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548018.png" /> are matrices similar to the [[Dirac matrices|Dirac matrices]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548019.png" />. In the case of the Klein–Gordon equation the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548020.png" /> satisfy the commutation relations:
+
where the coefficients $  \Gamma  ^  \alpha  $
 +
are matrices similar to the [[Dirac matrices|Dirac matrices]] $  \gamma  ^  \alpha  $.  
 +
In the case of the Klein–Gordon equation the matrices $  \Gamma  ^  \alpha  $
 +
satisfy the commutation relations:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548021.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
\Gamma _  \mu  \Gamma _  \nu  \Gamma _  \rho  +
 +
\Gamma _  \rho  \Gamma _  \nu  \Gamma _  \mu  = \
 +
\eta _ {\mu \nu }
 +
\Gamma _  \rho  +
 +
\eta _ {\rho \nu }
 +
\Gamma _  \mu  .
 +
$$
  
For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548022.png" /> (Kemmer–Duffin matrices). Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548023.png" /> is the metric tensor of [[Minkowski space|Minkowski space]]. All the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548024.png" /> are singular matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548025.png" />. Hence they do not have inverses.
+
For example, $  ( \Gamma _  \alpha  )  ^ {3} = \eta _ {\alpha \alpha }  \Gamma _  \alpha  $(
 +
Kemmer–Duffin matrices). Here $  \eta _ {\mu \nu }  $
 +
is the metric tensor of [[Minkowski space|Minkowski space]]. All the $  \Gamma  ^  \alpha  $
 +
are singular matrices $  (  \mathop{\rm det}  \Gamma _  \alpha  = 0 ) $.  
 +
Hence they do not have inverses.
  
Apart from the trivial solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548026.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548027.png" /> to (4) and a solution in the form of five-row matrices, describing the scalar field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548028.png" /> itself and the four components of its gradient, equation (4) has a further solution in the form of ten-row matrices. The corresponding ten-component function contains the four components of the potential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548029.png" /> and the six components of the stress <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548030.png" />, that is, equations (3) and (4) can simultaneously give a representation for the Proca equation describing vector particles with spin 1; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548031.png" /> and real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548032.png" /> they give a representation of the [[Maxwell equations|Maxwell equations]].
+
Apart from the trivial solution $  \Gamma _  \alpha  = 0 $,  
 +
$  \psi = 0 $
 +
to (4) and a solution in the form of five-row matrices, describing the scalar field $  \phi $
 +
itself and the four components of its gradient, equation (4) has a further solution in the form of ten-row matrices. The corresponding ten-component function contains the four components of the potential $  A _  \alpha  $
 +
and the six components of the stress $  F _ {\alpha \beta }  = 2 \partial  _ {[ \alpha{} }  A _ { {}\beta ] }  $,  
 +
that is, equations (3) and (4) can simultaneously give a representation for the Proca equation describing vector particles with spin 1; for $  \mu = 0 $
 +
and real $  \phi $
 +
they give a representation of the [[Maxwell equations|Maxwell equations]].
  
 
When taking into account the interaction of the (pseudo-) scalar particles with a gravity field in accordance with the general theory of relativity, the Klein–Gordon equation is generalized onto an arbitrary Riemannian space as:
 
When taking into account the interaction of the (pseudo-) scalar particles with a gravity field in accordance with the general theory of relativity, the Klein–Gordon equation is generalized onto an arbitrary Riemannian space as:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548033.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
 
 +
\frac{1}{\sqrt - g }
 +
 
 +
\frac \partial {\partial  x  ^  \alpha  }
 +
 
 +
\left (
 +
\sqrt - g g ^ {\alpha \beta }
 +
 
 +
\frac{\partial  \phi }{\partial  x  ^  \beta  }
 +
 
 +
\right )
 +
- \mu  ^ {2} \phi  = 0 ,
 +
$$
 +
 
 +
where  $  g _ {\alpha \beta }  $
 +
is the metric tensor and  $  g $
 +
is the determinant of the matrix  $  \| g _ {\alpha \beta }  \| $.  
 +
In equation (5) the term  $  R \phi / 6 $
 +
is frequently added, where  $  R $
 +
is the scalar curvature, as a result of which, when  $  \mu = 0 $,
 +
the general relativistic Klein–Gordon equation
 +
 
 +
$$
 +
 
 +
\frac{1}{\sqrt - g }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548034.png" /> is the metric tensor and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548035.png" /> is the determinant of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548036.png" />. In equation (5) the term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548037.png" /> is frequently added, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548038.png" /> is the scalar curvature, as a result of which, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548039.png" />, the general relativistic Klein–Gordon equation
+
\frac \partial {\partial  x  ^  \alpha  }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055480/k05548040.png" /></td> </tr></table>
+
\left (
 +
\sqrt - g g ^ {\alpha \beta }
 +
 
 +
\frac{\partial  \phi }{\partial  x  ^  \beta  }
 +
 
 +
\right )
 +
-  
 +
\frac{R \phi }{6}
 +
  = 0
 +
$$
  
 
becomes conformally invariant.
 
becomes conformally invariant.
Line 47: Line 186:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  O. Klein,  ''Z. Phys.'' , '''37'''  (1926)  pp. 895–906</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Gordon,  ''Z. Phys.'' , '''40'''  (1926–1927)  pp. 117–133</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W. Pauli,  V. Weisskopf,  "Ueber die Quantisierung der skalaren relativistischen Wellengleichung"  ''Helv. Phys. Acta'' , '''7'''  (1934)  pp. 709–731</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Bogolyubov,  D.V. Shirkov,  "Introduction to the theory of quantized fields" , Interscience  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Schweber,  "An introduction to relativistic quantum field theory" , Harper &amp; Row  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  O. Klein,  ''Z. Phys.'' , '''37'''  (1926)  pp. 895–906</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Gordon,  ''Z. Phys.'' , '''40'''  (1926–1927)  pp. 117–133</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W. Pauli,  V. Weisskopf,  "Ueber die Quantisierung der skalaren relativistischen Wellengleichung"  ''Helv. Phys. Acta'' , '''7'''  (1934)  pp. 709–731</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N.N. Bogolyubov,  D.V. Shirkov,  "Introduction to the theory of quantized fields" , Interscience  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  S. Schweber,  "An introduction to relativistic quantum field theory" , Harper &amp; Row  (1962)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 22:14, 5 June 2020


The relativistically-invariant quantum equation describing spinless scalar or pseudo-scalar particles, for example, $ \pi $-, and $ K $- mesons. The equation was established by O. Klein [1] and somewhat later by V.A. Fock [V.A. Fok] as a wave equation under the conditions of cyclicity in the fifth coordinate and was shortly afterwards deduced by several authors (for example, W. Gordon [2]) without this requirement on the fifth coordinate.

The subsequent application of the Klein–Gordon equation as a relativistic quantum equation proved possible in quantum field theory but not in quantum mechanics. In [3] an interpretation of the Klein–Gordon equation was given as an equation for fields of particles of zero spin. The Klein–Gordon equation is applied in the description of $ \pi $- mesons and corresponding fields; it plays the role of one of the fundamental equations of quantum field theory.

The Klein–Gordon equation is a linear homogeneous second-order partial differential equation with constant coefficients:

$$ \tag{1 } \left ( \frac{\partial ^ {2} }{\partial x ^ {2} } + \frac{\partial ^ {2} }{\partial y ^ {2} } + \frac{\partial ^ {2} }{\partial z ^ {2} } - \frac{\partial ^ {2} }{c ^ {2} \partial t ^ {2} } - \mu ^ {2} \right ) \phi = 0 , $$

where $ \phi ( \mathbf x , t ) $ is a (pseudo-) scalar function, in the general case — complex, $ \mu = m c / \hbar $ and $ m $ is the rest mass of the particle. If $ \phi $ is a real function, then the Klein–Gordon equation describes neutral (pseudo-) scalar particles, while when $ \phi $ is complex it describes charged particles.

In the latter case equation (1) is supplemented by the equation for the complex-conjugate scalar function $ \phi ^ {*} $:

$$ \tag{2 } \left ( \frac{\partial ^ {2} }{\partial x ^ {2} } + \frac{\partial ^ {2} }{\partial y ^ {2} } + \frac{\partial ^ {2} }{\partial z ^ {2} } - \frac{\partial ^ {2} }{c ^ {2} \partial t ^ {2} } - \mu ^ {2} \right ) \phi ^ {*} = 0 . $$

The interaction of (pseudo-) scalar particles with the electromagnetic field is described by the minimal substitution $ \partial / {\partial x ^ \alpha } \rightarrow ( \partial / {\partial x ^ \alpha } ) - i e A _ \alpha / \hbar $. Each component of the wave function of particles of any spin also satisfies the Klein–Gordon equation, but only for the case where the spin is 0 is the function invariant with respect to the Lorentz–Poincaré group.

The Klein–Gordon equation can be obtained by means of the relationship between the energy $ E $ and the momentum $ \mathbf p $ of the particle in special relativity theory,

$$ \frac{1}{c ^ {2} } E ^ {2} - p _ {x} ^ {2} - p _ {y} ^ {2} - p _ {z} ^ {2} = \ m ^ {2} c ^ {2} , $$

by replacing quantities by operators (see [4], [5]):

$$ E \rightarrow - \frac \hbar {i} \frac \partial {\partial t } ,\ \ \mathbf p \rightarrow \frac \hbar {i} \frac \partial {\partial \mathbf x } . $$

As for all relativistic equations, the Klein–Gordon equation can be expressed in the form of the Dirac equation, that is, it can be reduced to a first-order linear equation:

$$ \tag{3 } \left ( \Gamma ^ \alpha \frac \partial {\partial x ^ \alpha } - \mu \right ) \psi = 0 , $$

where the coefficients $ \Gamma ^ \alpha $ are matrices similar to the Dirac matrices $ \gamma ^ \alpha $. In the case of the Klein–Gordon equation the matrices $ \Gamma ^ \alpha $ satisfy the commutation relations:

$$ \tag{4 } \Gamma _ \mu \Gamma _ \nu \Gamma _ \rho + \Gamma _ \rho \Gamma _ \nu \Gamma _ \mu = \ \eta _ {\mu \nu } \Gamma _ \rho + \eta _ {\rho \nu } \Gamma _ \mu . $$

For example, $ ( \Gamma _ \alpha ) ^ {3} = \eta _ {\alpha \alpha } \Gamma _ \alpha $( Kemmer–Duffin matrices). Here $ \eta _ {\mu \nu } $ is the metric tensor of Minkowski space. All the $ \Gamma ^ \alpha $ are singular matrices $ ( \mathop{\rm det} \Gamma _ \alpha = 0 ) $. Hence they do not have inverses.

Apart from the trivial solution $ \Gamma _ \alpha = 0 $, $ \psi = 0 $ to (4) and a solution in the form of five-row matrices, describing the scalar field $ \phi $ itself and the four components of its gradient, equation (4) has a further solution in the form of ten-row matrices. The corresponding ten-component function contains the four components of the potential $ A _ \alpha $ and the six components of the stress $ F _ {\alpha \beta } = 2 \partial _ {[ \alpha{} } A _ { {}\beta ] } $, that is, equations (3) and (4) can simultaneously give a representation for the Proca equation describing vector particles with spin 1; for $ \mu = 0 $ and real $ \phi $ they give a representation of the Maxwell equations.

When taking into account the interaction of the (pseudo-) scalar particles with a gravity field in accordance with the general theory of relativity, the Klein–Gordon equation is generalized onto an arbitrary Riemannian space as:

$$ \tag{5 } \frac{1}{\sqrt - g } \frac \partial {\partial x ^ \alpha } \left ( \sqrt - g g ^ {\alpha \beta } \frac{\partial \phi }{\partial x ^ \beta } \right ) - \mu ^ {2} \phi = 0 , $$

where $ g _ {\alpha \beta } $ is the metric tensor and $ g $ is the determinant of the matrix $ \| g _ {\alpha \beta } \| $. In equation (5) the term $ R \phi / 6 $ is frequently added, where $ R $ is the scalar curvature, as a result of which, when $ \mu = 0 $, the general relativistic Klein–Gordon equation

$$ \frac{1}{\sqrt - g } \frac \partial {\partial x ^ \alpha } \left ( \sqrt - g g ^ {\alpha \beta } \frac{\partial \phi }{\partial x ^ \beta } \right ) - \frac{R \phi }{6} = 0 $$

becomes conformally invariant.

References

[1] O. Klein, Z. Phys. , 37 (1926) pp. 895–906
[2] W. Gordon, Z. Phys. , 40 (1926–1927) pp. 117–133
[3] W. Pauli, V. Weisskopf, "Ueber die Quantisierung der skalaren relativistischen Wellengleichung" Helv. Phys. Acta , 7 (1934) pp. 709–731
[4] N.N. Bogolyubov, D.V. Shirkov, "Introduction to the theory of quantized fields" , Interscience (1959) (Translated from Russian)
[5] S. Schweber, "An introduction to relativistic quantum field theory" , Harper & Row (1962)

Comments

Explicit formulas for the fundamental solutions of the Klein–Gordon equation (1) are derived in [a1], [a2]. For a derivation of the commutation relations (4) see also [a3].

References

[a1] J. Hilgevoord, "Dispersion relations and causal description" , North-Holland (1960)
[a2] E.M. de Jager, "The Lorentz-invariant solutions of the Klein–Gordon equation I-III" Indag. Math. , 25 : 4 (1963) pp. 515–531; 532–545; 546–558
[a3] P. Roman, "Theory of elementary particles" , North-Holland (1960)
[a4] J.D. Björken, S.D. Drell, "Relativistic quantum mechanics" , McGraw-Hill (1964)
How to Cite This Entry:
Klein-Gordon equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Klein-Gordon_equation&oldid=47503
This article was adapted from an original article by V.G. Krechet (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article