Difference between revisions of "Janet theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | j0541901.png | ||
+ | $#A+1 = 10 n = 0 | ||
+ | $#C+1 = 10 : ~/encyclopedia/old_files/data/J054/J.0504190 Janet theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | In every analytic [[Riemannian manifold|Riemannian manifold]] of dimension $ n $ | |
+ | there exists a neighbourhood of an arbitrarily chosen point having an isometric imbedding into the Euclidean space $ \mathbf R ^ {s _ {n} } $ | ||
+ | of dimension $ s _ {n} = n ( n + 1 ) / 2 $. | ||
+ | Janet's theorem remains true if $ \mathbf R ^ {s _ {n} } $ | ||
+ | is replaced by any analytic Riemannian manifold of dimension $ s _ {n} $ | ||
+ | with a prescribed point (to which the point chosen in the original manifold must be mapped). Janet's theorem is valid in the case of pseudo-Riemannian manifolds provided that | ||
+ | |||
+ | $$ | ||
+ | q \geq s _ {n} ,\ q _ {+} \geq n _ {+} ,\ \ | ||
+ | q _ {-} \geq n _ {-} , | ||
+ | $$ | ||
+ | |||
+ | where $ n _ {+} $ | ||
+ | and $ n _ {-} = n - n _ {+} $ | ||
+ | are the dimensions of the positive and negative parts of the metric tensor on the original manifold, and $ q _ {+} $ | ||
+ | and $ q _ {-} = q - q _ {+} $ | ||
+ | are the corresponding dimensions of the target manifold (see [[#References|[3]]]). Janet's theorem is the first general imbedding theorem in Riemannian geometry (see [[Isometric immersion|Isometric immersion]]). | ||
Janet's theorem first appeared as a conjecture of L. Schläfli [[#References|[1]]], and was proved by M. Janet [[#References|[2]]]. | Janet's theorem first appeared as a conjecture of L. Schläfli [[#References|[1]]], and was proved by M. Janet [[#References|[2]]]. | ||
Line 9: | Line 33: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Schläfli, "Nota alla Memoria del signor Beltrami "Sugli spazi di curvatura costante" " ''Ann. Mat. Pura. Appl. Ser. 2'' , '''5''' (1873) pp. 178–193</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans un espace euclidien" ''Ann. Soc. Polon. Math.'' , '''5''' (1926) pp. 38–43</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Friedman, "Isometric imbedding of Riemannian manifolds into Euclidean spaces" ''Rev. Modern Physics'' , '''77''' (1965) pp. 201–203</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Schläfli, "Nota alla Memoria del signor Beltrami "Sugli spazi di curvatura costante" " ''Ann. Mat. Pura. Appl. Ser. 2'' , '''5''' (1873) pp. 178–193</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans un espace euclidien" ''Ann. Soc. Polon. Math.'' , '''5''' (1926) pp. 38–43</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Friedman, "Isometric imbedding of Riemannian manifolds into Euclidean spaces" ''Rev. Modern Physics'' , '''77''' (1965) pp. 201–203</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 22:14, 5 June 2020
In every analytic Riemannian manifold of dimension $ n $
there exists a neighbourhood of an arbitrarily chosen point having an isometric imbedding into the Euclidean space $ \mathbf R ^ {s _ {n} } $
of dimension $ s _ {n} = n ( n + 1 ) / 2 $.
Janet's theorem remains true if $ \mathbf R ^ {s _ {n} } $
is replaced by any analytic Riemannian manifold of dimension $ s _ {n} $
with a prescribed point (to which the point chosen in the original manifold must be mapped). Janet's theorem is valid in the case of pseudo-Riemannian manifolds provided that
$$ q \geq s _ {n} ,\ q _ {+} \geq n _ {+} ,\ \ q _ {-} \geq n _ {-} , $$
where $ n _ {+} $ and $ n _ {-} = n - n _ {+} $ are the dimensions of the positive and negative parts of the metric tensor on the original manifold, and $ q _ {+} $ and $ q _ {-} = q - q _ {+} $ are the corresponding dimensions of the target manifold (see [3]). Janet's theorem is the first general imbedding theorem in Riemannian geometry (see Isometric immersion).
Janet's theorem first appeared as a conjecture of L. Schläfli [1], and was proved by M. Janet [2].
References
[1] | L. Schläfli, "Nota alla Memoria del signor Beltrami "Sugli spazi di curvatura costante" " Ann. Mat. Pura. Appl. Ser. 2 , 5 (1873) pp. 178–193 |
[2] | M. Janet, "Sur la possibilité de plonger un espace Riemannien donné dans un espace euclidien" Ann. Soc. Polon. Math. , 5 (1926) pp. 38–43 |
[3] | A. Friedman, "Isometric imbedding of Riemannian manifolds into Euclidean spaces" Rev. Modern Physics , 77 (1965) pp. 201–203 |
Comments
The theorem was also proved by E. Cartan [a1]. A rigorous proof along the lines suggested by Janet was given by C. Burstin [a2]. See also [a3].
References
[a1] | E. Cartan, "Sur la possibilité de plonger un espace riemannien donné dans un espace euclidéen" Ann. Soc. Polon. Math. , 6 (1927) pp. 1–7 |
[a2] | C. Burstin, Mat. Sb. , 38 (1931) pp. 74–93 |
[a3] | M. Spivak, "A comprehensive introduction to differential geometry" , 5 , Publish or Perish (1975) pp. 1–5 |
Janet theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Janet_theorem&oldid=47462