Difference between revisions of "Jacobi polynomials"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | j0541001.png | ||
+ | $#A+1 = 65 n = 0 | ||
+ | $#C+1 = 65 : ~/encyclopedia/old_files/data/J054/J.0504100 Jacobi polynomials | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | [[Orthogonal polynomials|Orthogonal polynomials]] on the interval $ [- 1, 1] $ | ||
+ | with the weight function | ||
+ | |||
+ | $$ | ||
+ | h ( x) = ( 1 - x) ^ \alpha ( 1 + x) ^ \beta ,\ \ | ||
+ | \alpha , \beta > - 1,\ \ | ||
+ | x \in [- 1, 1]. | ||
+ | $$ | ||
The standardized Jacobi polynomials are defined by the [[Rodrigues formula|Rodrigues formula]]: | The standardized Jacobi polynomials are defined by the [[Rodrigues formula|Rodrigues formula]]: | ||
− | + | $$ | |
+ | P _ {n} ( x; \alpha , \beta ) = \ | ||
+ | P _ {n} ^ {( \alpha , \beta ) } ( x) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | |||
+ | \frac{(- 1) ^ {n} }{n! 2 ^ {n} } | ||
+ | ( 1 - x) ^ {- \alpha | ||
+ | } ( 1 + x) ^ {- \beta } | ||
+ | \frac{d ^ {n} }{dx ^ {n} } | ||
+ | [( 1 - | ||
+ | x) ^ \alpha ( 1 + x ) ^ \beta ( 1 - x ^ {2} ) ^ {n} ], | ||
+ | $$ | ||
and the orthonormal Jacobi polynomials have the form | and the orthonormal Jacobi polynomials have the form | ||
− | + | $$ | |
+ | \widehat{P} _ {n} ( x; \alpha , \beta ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | \sqrt { | ||
+ | \frac{n! ( \alpha + \beta + 2n + 1) \Gamma ( \alpha | ||
+ | + \beta + n + 1) }{2 ^ {\alpha + \beta + 1 } | ||
+ | \Gamma ( \alpha + n + 1) \Gamma ( \beta + n + 1) } | ||
+ | } P _ {n} ( x; \alpha , \beta ). | ||
+ | $$ | ||
− | The polynomial | + | The polynomial $ P _ {n} ( x; \alpha , \beta ) $ |
+ | satisfies the differential equation | ||
− | + | $$ | |
+ | ( 1 - x ^ {2} ) y ^ {\prime\prime} + | ||
+ | [ \beta - \alpha - ( \alpha + \beta + 2) x] | ||
+ | y ^ \prime + n ( n + \alpha + \beta + 1) y = 0. | ||
+ | $$ | ||
− | When | + | When $ \alpha \geq - 1/2 $ |
+ | and $ \beta \geq - 1/2 $, | ||
+ | the orthonormal Jacobi polynomials satisfy the following weighted estimate: | ||
− | + | $$ | |
+ | ( 1 - x) ^ {( 2 \alpha + 1)/4 } | ||
+ | ( 1 + x) ^ {( 2 \beta + 1)/4 } | ||
+ | | \widehat{P} _ {n} ( x; \alpha , \beta ) | \leq c _ {1} , | ||
+ | $$ | ||
− | + | $$ | |
+ | x \in [- 1, 1], | ||
+ | $$ | ||
− | where the constant | + | where the constant $ c _ {1} $ |
+ | does not depend on $ n $ | ||
+ | and $ x $. | ||
+ | At $ x = \pm 1 $ | ||
+ | the sequence $ \{ \widehat{P} _ {n} ( x; \alpha , \beta ) \} $ | ||
+ | grows at a rate $ n ^ {\alpha + 1/2 } $ | ||
+ | and $ n ^ {\beta + 1/2 } $, | ||
+ | respectively. | ||
− | Fourier series in Jacobi polynomials (cf. [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]]) inside the interval | + | Fourier series in Jacobi polynomials (cf. [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]]) inside the interval $ (- 1, 1) $ |
+ | are similar to trigonometric Fourier series. But in neighbourhoods of the end points of this interval, the orthogonality properties of Fourier–Jacobi series are different, because at $ x = \pm 1 $ | ||
+ | the orthonormal Jacobi polynomials grow unboundedly. The Fourier–Jacobi series of a function $ f $ | ||
+ | is uniformly convergent on $ [- 1, 1] $ | ||
+ | if $ f $ | ||
+ | is $ p $ | ||
+ | times continuously differentiable on this segment and $ f ^ { ( p) } \in \mathop{\rm Lip} \gamma $ | ||
+ | with $ p + \gamma > q + 1/2 $, | ||
+ | where | ||
− | + | $$ | |
+ | q = \max \{ \alpha , \beta \} > - { | ||
+ | \frac{1}{2} | ||
+ | } . | ||
+ | $$ | ||
Under these conditions the following inequality holds: | Under these conditions the following inequality holds: | ||
− | + | $$ | |
+ | \left | f ( x) - | ||
+ | \sum _ {k = 0 } ^ { n } | ||
+ | a _ {k} \widehat{P} _ {k} ( x; \alpha , \beta ) \right | \leq \ | ||
− | + | \frac{c _ {2} }{n ^ {p + \gamma } } | |
+ | n ^ {( 2q + 1)/2 } , | ||
+ | $$ | ||
− | + | $$ | |
+ | x \in [- 1, 1], | ||
+ | $$ | ||
− | + | where the constant $ c _ {2} $ | |
+ | does not depend on $ n $ | ||
+ | and $ x $. | ||
+ | On the other hand, when $ \alpha \geq - 1/2 $ | ||
+ | and $ \beta \geq - 1/2 $, | ||
+ | the remainder in the Fourier–Jacobi series for $ f $ | ||
+ | satisfies the following weighted estimate: | ||
− | + | $$ | |
+ | ( 1 - x ^ {2} ) ^ {1/4} | ||
+ | \sqrt {h ( x) } \left | f ( x) - | ||
+ | \sum _ {k = 0 } ^ { n } | ||
+ | a _ {k} \widehat{P} _ {k} ( x; \alpha , \beta ) \right | \leq | ||
+ | $$ | ||
− | + | $$ | |
+ | \leq \ | ||
+ | c _ {3} E _ {n} ( f ) \mathop{\rm ln} n,\ \ | ||
+ | x \in [- 1, 1], | ||
+ | $$ | ||
− | The Jacobi polynomials were introduced by C.G.J. Jacobi [[#References|[1]]] in connection with the solution of the [[Hypergeometric equation|hypergeometric equation]]. Special cases of the Jacobi polynomials are: the [[Legendre polynomials|Legendre polynomials]] (when | + | where $ n \geq 2 $, |
+ | the constant $ c _ {3} $ | ||
+ | does not depend on $ n $ | ||
+ | and $ x $, | ||
+ | and $ E _ {n} ( f ) $ | ||
+ | is the best uniform approximation error (cf. [[Best approximation|Best approximation]]) of the continuous function $ f $ | ||
+ | on $ [- 1, 1] $ | ||
+ | by polynomials of degree not exceeding $ n $. | ||
+ | |||
+ | The Jacobi polynomials were introduced by C.G.J. Jacobi [[#References|[1]]] in connection with the solution of the [[Hypergeometric equation|hypergeometric equation]]. Special cases of the Jacobi polynomials are: the [[Legendre polynomials|Legendre polynomials]] (when $ \alpha = \beta = 0 $); | ||
+ | the [[Chebyshev polynomials|Chebyshev polynomials]] of the first kind (when $ \alpha = \beta = - 1/2 $); | ||
+ | the Chebyshev polynomials of the second kind (when $ \alpha = \beta = 1/2 $); | ||
+ | and the [[Ultraspherical polynomials|ultraspherical polynomials]] (when $ \alpha = \beta $). | ||
See also [[Classical orthogonal polynomials|Classical orthogonal polynomials]]. | See also [[Classical orthogonal polynomials|Classical orthogonal polynomials]]. | ||
Line 52: | Line 156: | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.G.J. Jacobi, "Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe" ''J. Reine Angew. Math.'' , '''56''' (1859) pp. 149–165</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1978) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C.G.J. Jacobi, "Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe" ''J. Reine Angew. Math.'' , '''56''' (1859) pp. 149–165</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1978) (In Russian)</TD></TR></table> | ||
+ | ====Comments==== | ||
+ | See also [[#References|[a4]]], [[#References|[a1]]] and [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]]. | ||
+ | |||
+ | Let $ \alpha , \beta > - 1 $ | ||
+ | and $ - 1 < x, y < 1 $. | ||
+ | Then there is a product formula of the form | ||
+ | $$ | ||
− | + | \frac{P _ {n} ^ {( \alpha , \beta ) } ( x) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } | |
− | |||
− | + | \frac{P _ {n} ^ {( \alpha , \beta ) } ( y) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } | |
+ | = \ | ||
+ | \int\limits _ { - } 1 ^ { 1 } | ||
− | + | \frac{P _ {n} ^ {( \alpha , \beta ) } ( z) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } | |
+ | \ | ||
+ | d \mu _ {x,y} ( z),\ \ | ||
+ | n = 0, 1 \dots | ||
+ | $$ | ||
− | with positive measure | + | with positive measure $ d \mu _ {x,y} ( z) = d \mu _ {x,y} ^ {\alpha , \beta } ( z) $ |
+ | if and only if $ \alpha \geq \beta $ | ||
+ | and either $ \beta \geq - 1/2 $ | ||
+ | or $ \alpha + \beta \geq 0 $. | ||
+ | This yields a positive convolution structure for Jacobi series. For $ \alpha \geq \beta \geq - 1/2 $ | ||
+ | the above measure can be computed explicitly from the addition formula for Jacobi polynomials. See [[#References|[a1]]], Lecture 4. | ||
For the dual problem one has | For the dual problem one has | ||
− | + | $$ | |
+ | P _ {n} ^ {( \alpha , \beta ) } ( x) | ||
+ | P _ {m} ^ {( \alpha , \beta ) } ( x) = \ | ||
+ | \sum _ {k = | n - m | } ^ { {n } + m } | ||
+ | C ( k, m, n) | ||
+ | P _ {k} ^ {( \alpha , \beta ) } ( x) , | ||
+ | $$ | ||
− | with | + | with $ C ( k, m, n) \geq 0 $ |
+ | if $ \alpha \geq \beta > - 1 $, | ||
+ | $ \alpha + \beta \geq - 1 $. | ||
+ | This yields a positive dual convolution structure for Jacobi series. See [[#References|[a1]]], Lecture 5. | ||
− | Jacobi polynomials admit many different group-theoretic interpretations. The three most important ones are as matrix elements of the irreducible representations of | + | Jacobi polynomials admit many different group-theoretic interpretations. The three most important ones are as matrix elements of the irreducible representations of $ \mathop{\rm SU} ( 2) $( |
+ | cf. [[#References|[a5]]], Chapt. 3), as $ O ( p) \times O ( q) $- | ||
+ | invariant [[Spherical harmonics|spherical harmonics]] on the unit sphere in $ \mathbf R ^ {p + 1 } $( | ||
+ | cf. [[#References|[a2]]]) and as zonal spherical functions on the compact symmetric spaces of rank one (cf. [[#References|[a3]]], Chapt. 5, §4.3). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Askey, "Orthogonal polynomials and special functions" , ''Reg. Conf. Ser. Appl. Math.'' , '''21''' , SIAM (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B.L.J. Braaksma, B. Meulenbeld, "Jacobi polynomials as spherical harmonics" ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''71''' (1968) pp. 384–389</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N.Ya. Vilenkin, "Special functions and the theory of group representations" , Amer. Math. Soc. (1968) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Askey, "Orthogonal polynomials and special functions" , ''Reg. Conf. Ser. Appl. Math.'' , '''21''' , SIAM (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B.L.J. Braaksma, B. Meulenbeld, "Jacobi polynomials as spherical harmonics" ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''71''' (1968) pp. 384–389</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> N.Ya. Vilenkin, "Special functions and the theory of group representations" , Amer. Math. Soc. (1968) (Translated from Russian)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
Orthogonal polynomials on the interval $ [- 1, 1] $
with the weight function
$$ h ( x) = ( 1 - x) ^ \alpha ( 1 + x) ^ \beta ,\ \ \alpha , \beta > - 1,\ \ x \in [- 1, 1]. $$
The standardized Jacobi polynomials are defined by the Rodrigues formula:
$$ P _ {n} ( x; \alpha , \beta ) = \ P _ {n} ^ {( \alpha , \beta ) } ( x) = $$
$$ = \ \frac{(- 1) ^ {n} }{n! 2 ^ {n} } ( 1 - x) ^ {- \alpha } ( 1 + x) ^ {- \beta } \frac{d ^ {n} }{dx ^ {n} } [( 1 - x) ^ \alpha ( 1 + x ) ^ \beta ( 1 - x ^ {2} ) ^ {n} ], $$
and the orthonormal Jacobi polynomials have the form
$$ \widehat{P} _ {n} ( x; \alpha , \beta ) = $$
$$ = \ \sqrt { \frac{n! ( \alpha + \beta + 2n + 1) \Gamma ( \alpha + \beta + n + 1) }{2 ^ {\alpha + \beta + 1 } \Gamma ( \alpha + n + 1) \Gamma ( \beta + n + 1) } } P _ {n} ( x; \alpha , \beta ). $$
The polynomial $ P _ {n} ( x; \alpha , \beta ) $ satisfies the differential equation
$$ ( 1 - x ^ {2} ) y ^ {\prime\prime} + [ \beta - \alpha - ( \alpha + \beta + 2) x] y ^ \prime + n ( n + \alpha + \beta + 1) y = 0. $$
When $ \alpha \geq - 1/2 $ and $ \beta \geq - 1/2 $, the orthonormal Jacobi polynomials satisfy the following weighted estimate:
$$ ( 1 - x) ^ {( 2 \alpha + 1)/4 } ( 1 + x) ^ {( 2 \beta + 1)/4 } | \widehat{P} _ {n} ( x; \alpha , \beta ) | \leq c _ {1} , $$
$$ x \in [- 1, 1], $$
where the constant $ c _ {1} $ does not depend on $ n $ and $ x $. At $ x = \pm 1 $ the sequence $ \{ \widehat{P} _ {n} ( x; \alpha , \beta ) \} $ grows at a rate $ n ^ {\alpha + 1/2 } $ and $ n ^ {\beta + 1/2 } $, respectively.
Fourier series in Jacobi polynomials (cf. Fourier series in orthogonal polynomials) inside the interval $ (- 1, 1) $ are similar to trigonometric Fourier series. But in neighbourhoods of the end points of this interval, the orthogonality properties of Fourier–Jacobi series are different, because at $ x = \pm 1 $ the orthonormal Jacobi polynomials grow unboundedly. The Fourier–Jacobi series of a function $ f $ is uniformly convergent on $ [- 1, 1] $ if $ f $ is $ p $ times continuously differentiable on this segment and $ f ^ { ( p) } \in \mathop{\rm Lip} \gamma $ with $ p + \gamma > q + 1/2 $, where
$$ q = \max \{ \alpha , \beta \} > - { \frac{1}{2} } . $$
Under these conditions the following inequality holds:
$$ \left | f ( x) - \sum _ {k = 0 } ^ { n } a _ {k} \widehat{P} _ {k} ( x; \alpha , \beta ) \right | \leq \ \frac{c _ {2} }{n ^ {p + \gamma } } n ^ {( 2q + 1)/2 } , $$
$$ x \in [- 1, 1], $$
where the constant $ c _ {2} $ does not depend on $ n $ and $ x $. On the other hand, when $ \alpha \geq - 1/2 $ and $ \beta \geq - 1/2 $, the remainder in the Fourier–Jacobi series for $ f $ satisfies the following weighted estimate:
$$ ( 1 - x ^ {2} ) ^ {1/4} \sqrt {h ( x) } \left | f ( x) - \sum _ {k = 0 } ^ { n } a _ {k} \widehat{P} _ {k} ( x; \alpha , \beta ) \right | \leq $$
$$ \leq \ c _ {3} E _ {n} ( f ) \mathop{\rm ln} n,\ \ x \in [- 1, 1], $$
where $ n \geq 2 $, the constant $ c _ {3} $ does not depend on $ n $ and $ x $, and $ E _ {n} ( f ) $ is the best uniform approximation error (cf. Best approximation) of the continuous function $ f $ on $ [- 1, 1] $ by polynomials of degree not exceeding $ n $.
The Jacobi polynomials were introduced by C.G.J. Jacobi [1] in connection with the solution of the hypergeometric equation. Special cases of the Jacobi polynomials are: the Legendre polynomials (when $ \alpha = \beta = 0 $); the Chebyshev polynomials of the first kind (when $ \alpha = \beta = - 1/2 $); the Chebyshev polynomials of the second kind (when $ \alpha = \beta = 1/2 $); and the ultraspherical polynomials (when $ \alpha = \beta $).
See also Classical orthogonal polynomials.
References
[1] | C.G.J. Jacobi, "Untersuchungen über die Differentialgleichung der hypergeometrischen Reihe" J. Reine Angew. Math. , 56 (1859) pp. 149–165 |
[2] | P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1978) (In Russian) |
Comments
See also [a4], [a1] and Fourier series in orthogonal polynomials.
Let $ \alpha , \beta > - 1 $ and $ - 1 < x, y < 1 $. Then there is a product formula of the form
$$ \frac{P _ {n} ^ {( \alpha , \beta ) } ( x) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } \frac{P _ {n} ^ {( \alpha , \beta ) } ( y) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } = \ \int\limits _ { - } 1 ^ { 1 } \frac{P _ {n} ^ {( \alpha , \beta ) } ( z) }{P _ {n} ^ {( \alpha , \beta ) } ( 1) } \ d \mu _ {x,y} ( z),\ \ n = 0, 1 \dots $$
with positive measure $ d \mu _ {x,y} ( z) = d \mu _ {x,y} ^ {\alpha , \beta } ( z) $ if and only if $ \alpha \geq \beta $ and either $ \beta \geq - 1/2 $ or $ \alpha + \beta \geq 0 $. This yields a positive convolution structure for Jacobi series. For $ \alpha \geq \beta \geq - 1/2 $ the above measure can be computed explicitly from the addition formula for Jacobi polynomials. See [a1], Lecture 4.
For the dual problem one has
$$ P _ {n} ^ {( \alpha , \beta ) } ( x) P _ {m} ^ {( \alpha , \beta ) } ( x) = \ \sum _ {k = | n - m | } ^ { {n } + m } C ( k, m, n) P _ {k} ^ {( \alpha , \beta ) } ( x) , $$
with $ C ( k, m, n) \geq 0 $ if $ \alpha \geq \beta > - 1 $, $ \alpha + \beta \geq - 1 $. This yields a positive dual convolution structure for Jacobi series. See [a1], Lecture 5.
Jacobi polynomials admit many different group-theoretic interpretations. The three most important ones are as matrix elements of the irreducible representations of $ \mathop{\rm SU} ( 2) $( cf. [a5], Chapt. 3), as $ O ( p) \times O ( q) $- invariant spherical harmonics on the unit sphere in $ \mathbf R ^ {p + 1 } $( cf. [a2]) and as zonal spherical functions on the compact symmetric spaces of rank one (cf. [a3], Chapt. 5, §4.3).
References
[a1] | R. Askey, "Orthogonal polynomials and special functions" , Reg. Conf. Ser. Appl. Math. , 21 , SIAM (1975) |
[a2] | B.L.J. Braaksma, B. Meulenbeld, "Jacobi polynomials as spherical harmonics" Nederl. Akad. Wetensch. Proc. Ser. A , 71 (1968) pp. 384–389 |
[a3] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 |
[a4] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
[a5] | N.Ya. Vilenkin, "Special functions and the theory of group representations" , Amer. Math. Soc. (1968) (Translated from Russian) |
Jacobi polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jacobi_polynomials&oldid=47459