|
|
Line 1: |
Line 1: |
− | ''of a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506402.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506403.png" />''
| + | <!-- |
| + | i0506402.png |
| + | $#A+1 = 66 n = 0 |
| + | $#C+1 = 66 : ~/encyclopedia/old_files/data/I050/I.0500640 Index |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506404.png" /> in the [[Congruence|congruence]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506405.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506406.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506407.png" /> are relatively prime integers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506408.png" /> is a fixed [[Primitive root|primitive root]] modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i0506409.png" />. The index of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064010.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064011.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064012.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064013.png" /> for short. Primitive roots exist only for moduli of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064015.png" /> is a prime number; consequently, the notion of an index is only defined for these moduli.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064016.png" /> is a primitive root modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064018.png" /> runs through the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064020.png" /> is the [[Euler function|Euler function]], then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064021.png" /> runs through a [[Reduced system of residues|reduced system of residues]] modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064022.png" />. Consequently, for each number relatively prime with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064023.png" /> there exist a unique index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064024.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064025.png" />. Any other index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064026.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064027.png" /> satisfies the congruence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064028.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064029.png" />. Therefore, the indices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064030.png" /> form a residue class modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064031.png" />.
| + | ''of a number $ a $ |
| + | modulo $ m $'' |
| + | |
| + | The exponent $ \gamma $ |
| + | in the [[Congruence|congruence]] $ a \equiv g ^ {\gamma\ (} \mathop{\rm mod} m ) $, |
| + | where $ a $ |
| + | and $ m $ |
| + | are relatively prime integers and $ g $ |
| + | is a fixed [[Primitive root|primitive root]] modulo $ m $. |
| + | The index of $ a $ |
| + | modulo $ m $ |
| + | is denoted by $ \gamma = \mathop{\rm ind} _ {g} a $, |
| + | or $ \gamma = \mathop{\rm ind} a $ |
| + | for short. Primitive roots exist only for moduli of the form $ 2 , 4 , p ^ \alpha , 2 p ^ \alpha $, |
| + | where $ p > 2 $ |
| + | is a prime number; consequently, the notion of an index is only defined for these moduli. |
| + | |
| + | If $ g $ |
| + | is a primitive root modulo $ m $ |
| + | and $ \gamma $ |
| + | runs through the values $ 0 \dots \phi ( m) - 1 $, |
| + | where $ \phi ( m) $ |
| + | is the [[Euler function|Euler function]], then $ g ^ \gamma $ |
| + | runs through a [[Reduced system of residues|reduced system of residues]] modulo $ m $. |
| + | Consequently, for each number relatively prime with $ m $ |
| + | there exist a unique index $ \gamma $ |
| + | for which $ 0 \leq \gamma \leq \phi ( m) - 1 $. |
| + | Any other index $ \gamma ^ \prime $ |
| + | of $ a $ |
| + | satisfies the congruence $ \gamma ^ \prime \equiv \gamma $ |
| + | $ \mathop{\rm mod} \phi ( m) $. |
| + | Therefore, the indices of $ a $ |
| + | form a residue class modulo $ \phi ( m) $. |
| | | |
| The notion of an index is analogous to that of a [[Logarithm of a number|logarithm of a number]], and the index satisfies a number of properties of the logarithm, namely: | | The notion of an index is analogous to that of a [[Logarithm of a number|logarithm of a number]], and the index satisfies a number of properties of the logarithm, namely: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064032.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm ind} ( a b ) \equiv \ |
| + | \mathop{\rm ind} a + \mathop{\rm ind} b \ |
| + | ( \mathop{\rm mod} \phi ( m) ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064033.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm ind} ( a ^ {n} ) \equiv n \mathop{\rm ind} a ( \mathop{\rm mod} \phi ( n) ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064034.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm ind} |
| + | \frac{a}{b} |
| + | \equiv \mathop{\rm ind} a - \mathop{\rm ind} b ( \mathop{\rm mod} \phi ( m) ) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064035.png" /> denotes the root of the equation | + | where $ a / b $ |
| + | denotes the root of the equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064036.png" /></td> </tr></table>
| + | $$ |
| + | b x \equiv a ( \mathop{\rm mod} m ) . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064037.png" /> is the canonical factorization of an arbitrary natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064039.png" /> are primitive roots modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064040.png" />, respectively, then for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064041.png" /> relatively primitive with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064042.png" /> there exist integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064043.png" /> for which | + | If $ m = 2 ^ \alpha p _ {1} ^ {\alpha _ {1} } \dots p _ {s} ^ {\alpha _ {s} } $ |
| + | is the canonical factorization of an arbitrary natural number $ m $ |
| + | and $ g _ {1} \dots g _ {s} $ |
| + | are primitive roots modulo $ p _ {1} ^ {\alpha _ {1} } \dots p _ {s} ^ {\alpha _ {s} } $, |
| + | respectively, then for each $ a $ |
| + | relatively primitive with $ m $ |
| + | there exist integers $ \gamma , \gamma _ {0} \dots \gamma _ {s} $ |
| + | for which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064044.png" /></td> </tr></table>
| + | $$ |
| + | a \equiv ( - 1 ) ^ \gamma |
| + | 5 ^ {\gamma _ {0} } \ |
| + | ( \mathop{\rm mod} 2 ^ \alpha ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064045.png" /></td> </tr></table>
| + | $$ |
| + | a \equiv g _ {1} ^ {\gamma _ {1} } ( \mathop{\rm mod} p _ {1} ^ {\alpha _ {1} } ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064046.png" /></td> </tr></table>
| + | $$ |
| + | {\dots \dots \dots \dots } |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064047.png" /></td> </tr></table>
| + | $$ |
| + | a \equiv g _ {s} ^ {\gamma _ {s} } ( \mathop{\rm mod} p _ {s} ^ {\alpha _ {s} } ) . |
| + | $$ |
| | | |
− | The above system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064048.png" /> is called a system of indices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064050.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064051.png" />. To each number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064052.png" /> relatively prime with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064053.png" /> corresponds a unique system of indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064054.png" /> for which | + | The above system $ \gamma , \gamma _ {0} \dots \gamma _ {s} $ |
| + | is called a system of indices of $ a $ |
| + | modulo $ m $. |
| + | To each number $ a $ |
| + | relatively prime with $ m $ |
| + | corresponds a unique system of indices $ \gamma , \gamma _ {0} \dots \gamma _ {s} $ |
| + | for which |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064055.png" /></td> </tr></table>
| + | $$ |
| + | 0 \leq \gamma \leq c - 1 ,\ \ |
| + | 0 \leq \gamma _ {0} \leq c _ {0} - 1 , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064056.png" /></td> </tr></table>
| + | $$ |
| + | 0 \leq \gamma _ {1} \leq c _ {1} \dots 0 \leq \gamma _ {s} \leq c _ {s} , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064058.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064059.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064060.png" /> and defined as follows: | + | where $ c _ {i} = \phi ( p _ {i} ^ {\alpha _ {i} } ) $, |
| + | $ i = 1 \dots s $, |
| + | and $ c $ |
| + | and $ c _ {0} $ |
| + | and defined as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064061.png" /></td> </tr></table>
| + | $$ |
| + | c = 1 , c _ {0} = 1 \ \ |
| + | \textrm{ for } \ |
| + | \alpha = 0 \ |
| + | \textrm{ or } \alpha = 1 , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064062.png" /></td> </tr></table>
| + | $$ |
| + | c = 2 , c _ {0} = 2 ^ {\alpha - 2 } \textrm{ for } \alpha \geq 2 . |
| + | $$ |
| | | |
− | Every other system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064063.png" /> of indices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064064.png" /> satisfies the congruences | + | Every other system $ \gamma ^ \prime , \gamma _ {0} ^ \prime \dots \gamma _ {s} ^ \prime $ |
| + | of indices of $ a $ |
| + | satisfies the congruences |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064065.png" /></td> </tr></table>
| + | $$ |
| + | \gamma ^ \prime \equiv \gamma ( \mathop{\rm mod} c ) ,\ |
| + | \gamma _ {0} ^ \prime \equiv \gamma _ {0} ( \mathop{\rm mod} c _ {0} ) \dots |
| + | \gamma _ {s} ^ \prime \equiv \gamma _ {s} ( \mathop{\rm mod} c _ {s} ) . |
| + | $$ |
| | | |
− | The notion of a system of indices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064066.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064067.png" /> is convenient for the explicit construction of characters of the multiplicative group of reduced residue classes modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050640/i05064068.png" />. | + | The notion of a system of indices of $ a $ |
| + | modulo $ m $ |
| + | is convenient for the explicit construction of characters of the multiplicative group of reduced residue classes modulo $ m $. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Davenport, "Multiplicative number theory" , Springer (1980)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Davenport, "Multiplicative number theory" , Springer (1980)</TD></TR></table> |
of a number $ a $
modulo $ m $
The exponent $ \gamma $
in the congruence $ a \equiv g ^ {\gamma\ (} \mathop{\rm mod} m ) $,
where $ a $
and $ m $
are relatively prime integers and $ g $
is a fixed primitive root modulo $ m $.
The index of $ a $
modulo $ m $
is denoted by $ \gamma = \mathop{\rm ind} _ {g} a $,
or $ \gamma = \mathop{\rm ind} a $
for short. Primitive roots exist only for moduli of the form $ 2 , 4 , p ^ \alpha , 2 p ^ \alpha $,
where $ p > 2 $
is a prime number; consequently, the notion of an index is only defined for these moduli.
If $ g $
is a primitive root modulo $ m $
and $ \gamma $
runs through the values $ 0 \dots \phi ( m) - 1 $,
where $ \phi ( m) $
is the Euler function, then $ g ^ \gamma $
runs through a reduced system of residues modulo $ m $.
Consequently, for each number relatively prime with $ m $
there exist a unique index $ \gamma $
for which $ 0 \leq \gamma \leq \phi ( m) - 1 $.
Any other index $ \gamma ^ \prime $
of $ a $
satisfies the congruence $ \gamma ^ \prime \equiv \gamma $
$ \mathop{\rm mod} \phi ( m) $.
Therefore, the indices of $ a $
form a residue class modulo $ \phi ( m) $.
The notion of an index is analogous to that of a logarithm of a number, and the index satisfies a number of properties of the logarithm, namely:
$$
\mathop{\rm ind} ( a b ) \equiv \
\mathop{\rm ind} a + \mathop{\rm ind} b \
( \mathop{\rm mod} \phi ( m) ) ,
$$
$$
\mathop{\rm ind} ( a ^ {n} ) \equiv n \mathop{\rm ind} a ( \mathop{\rm mod} \phi ( n) ) ,
$$
$$
\mathop{\rm ind}
\frac{a}{b}
\equiv \mathop{\rm ind} a - \mathop{\rm ind} b ( \mathop{\rm mod} \phi ( m) ) ,
$$
where $ a / b $
denotes the root of the equation
$$
b x \equiv a ( \mathop{\rm mod} m ) .
$$
If $ m = 2 ^ \alpha p _ {1} ^ {\alpha _ {1} } \dots p _ {s} ^ {\alpha _ {s} } $
is the canonical factorization of an arbitrary natural number $ m $
and $ g _ {1} \dots g _ {s} $
are primitive roots modulo $ p _ {1} ^ {\alpha _ {1} } \dots p _ {s} ^ {\alpha _ {s} } $,
respectively, then for each $ a $
relatively primitive with $ m $
there exist integers $ \gamma , \gamma _ {0} \dots \gamma _ {s} $
for which
$$
a \equiv ( - 1 ) ^ \gamma
5 ^ {\gamma _ {0} } \
( \mathop{\rm mod} 2 ^ \alpha ) ,
$$
$$
a \equiv g _ {1} ^ {\gamma _ {1} } ( \mathop{\rm mod} p _ {1} ^ {\alpha _ {1} } ) ,
$$
$$
{\dots \dots \dots \dots }
$$
$$
a \equiv g _ {s} ^ {\gamma _ {s} } ( \mathop{\rm mod} p _ {s} ^ {\alpha _ {s} } ) .
$$
The above system $ \gamma , \gamma _ {0} \dots \gamma _ {s} $
is called a system of indices of $ a $
modulo $ m $.
To each number $ a $
relatively prime with $ m $
corresponds a unique system of indices $ \gamma , \gamma _ {0} \dots \gamma _ {s} $
for which
$$
0 \leq \gamma \leq c - 1 ,\ \
0 \leq \gamma _ {0} \leq c _ {0} - 1 ,
$$
$$
0 \leq \gamma _ {1} \leq c _ {1} \dots 0 \leq \gamma _ {s} \leq c _ {s} ,
$$
where $ c _ {i} = \phi ( p _ {i} ^ {\alpha _ {i} } ) $,
$ i = 1 \dots s $,
and $ c $
and $ c _ {0} $
and defined as follows:
$$
c = 1 , c _ {0} = 1 \ \
\textrm{ for } \
\alpha = 0 \
\textrm{ or } \alpha = 1 ,
$$
$$
c = 2 , c _ {0} = 2 ^ {\alpha - 2 } \textrm{ for } \alpha \geq 2 .
$$
Every other system $ \gamma ^ \prime , \gamma _ {0} ^ \prime \dots \gamma _ {s} ^ \prime $
of indices of $ a $
satisfies the congruences
$$
\gamma ^ \prime \equiv \gamma ( \mathop{\rm mod} c ) ,\
\gamma _ {0} ^ \prime \equiv \gamma _ {0} ( \mathop{\rm mod} c _ {0} ) \dots
\gamma _ {s} ^ \prime \equiv \gamma _ {s} ( \mathop{\rm mod} c _ {s} ) .
$$
The notion of a system of indices of $ a $
modulo $ m $
is convenient for the explicit construction of characters of the multiplicative group of reduced residue classes modulo $ m $.
References
[1] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
References
[a1] | H. Davenport, "Multiplicative number theory" , Springer (1980) |