Namespaces
Variants
Actions

Difference between revisions of "Hyperbolic metric"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
h0482701.png
 +
$#A+1 = 79 n = 0
 +
$#C+1 = 79 : ~/encyclopedia/old_files/data/H048/H.0408270 Hyperbolic metric,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''hyperbolic measure''
 
''hyperbolic measure''
  
 
A metric in a domain of the complex plane with at least three boundary points that is invariant under automorphisms of this domain.
 
A metric in a domain of the complex plane with at least three boundary points that is invariant under automorphisms of this domain.
  
The hyperbolic metric in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482701.png" /> is defined by the line element
+
The hyperbolic metric in the disc $  E = \{ {z } : {| z | < 1 } \} $
 +
is defined by the line element
 +
 
 +
$$
 +
d \sigma _ {z}  = \
 +
 
 +
\frac{| dz | }{1 - | z |  ^ {2} }
 +
,
 +
$$
 +
 
 +
where  $  | dz | $
 +
is the line element of Euclidean length. The introduction of the hyperbolic metric in  $  E $
 +
leads to a model of [[Lobachevskii geometry|Lobachevskii geometry]]. In this model the role of straight lines is played by Euclidean circles orthogonal to  $  | z | = 1 $
 +
and lying in  $  E $;
 +
the circle  $  | z | = 1 $
 +
plays the role of the improper point. Fractional-linear transformations of  $  E $
 +
onto itself serve as the motions in it. The hyperbolic length of a curve  $  L $
 +
lying inside  $  E $
 +
is defined by the formula
 +
 
 +
$$
 +
\mu _ {E} ( L)  = \
 +
\int\limits _ { L }
 +
 
 +
\frac{| dz | }{1 - | z |  ^ {2} }
 +
.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482702.png" /></td> </tr></table>
+
The hyperbolic distance between two points  $  z _ {1} $
 +
and  $  z _ {2} $
 +
of  $  E $
 +
is
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482703.png" /> is the line element of Euclidean length. The introduction of the hyperbolic metric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482704.png" /> leads to a model of [[Lobachevskii geometry|Lobachevskii geometry]]. In this model the role of straight lines is played by Euclidean circles orthogonal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482705.png" /> and lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482706.png" />; the circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482707.png" /> plays the role of the improper point. Fractional-linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482708.png" /> onto itself serve as the motions in it. The hyperbolic length of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h0482709.png" /> lying inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827010.png" /> is defined by the formula
+
$$
 +
r _ {E} ( z _ {1} , z _ {2} )  = \
 +
{
 +
\frac{1}{2}
 +
}  \mathop{\rm ln} \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827011.png" /></td> </tr></table>
+
\frac{| 1 - z _ {1} \overline{ {z _ {2} }}\; | + | z _ {1} - z _ {2} | }{| 1 - z _ {1} \overline{ {z _ {2} }}\; | - | z _ {1} - z _ {2} | }
 +
.
 +
$$
  
The hyperbolic distance between two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827014.png" /> is
+
The set of points of  $  E $
 +
whose hyperbolic distance from  $  z _ {0} $,
 +
$  z _ {0} \in E $,
 +
does not exceed a given number  $  R $,
 +
$  R > 0 $,
 +
i.e. the hyperbolic disc in  $  E $
 +
with hyperbolic centre at  $  z _ {0} $
 +
and hyperbolic radius  $  R $,
 +
is a Euclidean disc with centre other than  $  z _ {0} $
 +
if  $  z _ {0} \neq 0 $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827015.png" /></td> </tr></table>
+
The hyperbolic area of a domain  $  B $
 +
lying in  $  E $
 +
is defined by the formula
  
The set of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827016.png" /> whose hyperbolic distance from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827018.png" />, does not exceed a given number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827020.png" />, i.e. the hyperbolic disc in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827021.png" /> with hyperbolic centre at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827022.png" /> and hyperbolic radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827023.png" />, is a Euclidean disc with centre other than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827024.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827025.png" />.
+
$$
 +
\Delta _ {E} ( B)  = \
 +
{\int\limits \int\limits } _ { B }
  
The hyperbolic area of a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827026.png" /> lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827027.png" /> is defined by the formula
+
\frac{dx  dy }{( 1 - | z |  ^ {2} )  ^ {2} }
 +
,\ \
 +
z = x + iy.
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827028.png" /></td> </tr></table>
+
The quantities  $  \mu _ {E} ( L) $,
 +
$  r _ {E} ( z _ {1} , z _ {2} ) $
 +
and  $  \Delta _ {E} ( B) $
 +
are invariant with respect to fractional-linear transformations of  $  E $
 +
onto itself.
  
The quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827031.png" /> are invariant with respect to fractional-linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827032.png" /> onto itself.
+
The hyperbolic metric in any domain  $  D $
 +
of the  $  z $-
 +
plane with at least three boundary points is defined as the pre-image of the hyperbolic metric in  $  E $
 +
under the [[Conformal mapping|conformal mapping]]  $  \zeta = \zeta ( z) $
 +
of  $  D $
 +
onto $  E $;
 +
its line element is defined by the formula
  
The hyperbolic metric in any domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827033.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827034.png" />-plane with at least three boundary points is defined as the pre-image of the hyperbolic metric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827035.png" /> under the [[Conformal mapping|conformal mapping]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827036.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827037.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827038.png" />; its line element is defined by the formula
+
$$
 +
d \sigma _ {z}  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827039.png" /></td> </tr></table>
+
\frac{| \zeta  ^  \prime  ( z) |  | dz | }{1 - | \zeta ( z) |  ^ {2} }
 +
.
 +
$$
  
 
A domain with at most two boundary points can no longer be conformally mapped onto a disc. The quantity
 
A domain with at most two boundary points can no longer be conformally mapped onto a disc. The quantity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827040.png" /></td> </tr></table>
+
$$
 +
\rho _ {D} ( z)  = \
 +
 
 +
\frac{| \zeta  ^  \prime  ( z) | }{1 - | \zeta ( z) |  ^ {2} }
 +
 
 +
$$
 +
 
 +
is called the density of the hyperbolic metric of  $  D $.  
 +
The hyperbolic metric of a domain  $  D $
 +
does not depend on the selection of the mapping function or of its branch, and is completely determined by  $  D $.  
 +
The hyperbolic length of a curve  $  L $
 +
located in  $  D $
 +
is found by the formula
  
is called the density of the hyperbolic metric of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827041.png" />. The hyperbolic metric of a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827042.png" /> does not depend on the selection of the mapping function or of its branch, and is completely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827043.png" />. The hyperbolic length of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827044.png" /> located in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827045.png" /> is found by the formula
+
$$
 +
\mu _ {D} ( L)  = \
 +
\int\limits _ { L } \rho _ {D} ( z)  | dz | .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827046.png" /></td> </tr></table>
+
The hyperbolic distance between two points  $  z _ {1} $
 +
and  $  z _ {2} $
 +
in a domain  $  D $
 +
is
  
The hyperbolic distance between two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827048.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827049.png" /> is
+
$$
 +
r _ {D} ( z _ {1} , z _ {2} )  = {
 +
\frac{1}{2}
 +
}  \mathop{\rm ln} \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827050.png" /></td> </tr></table>
+
\frac{| 1 - \zeta ( z _ {1} ) \overline{ {\zeta ( z _ {2} ) }}\; | +
 +
| \zeta ( z _ {1} ) - \zeta ( z _ {2} ) | }{| 1 - \zeta ( z _ {1} ) \overline{ {\zeta ( z _ {2} ) }}\; | -
 +
| \zeta ( z _ {1} ) - \zeta ( z _ {2} ) | }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827051.png" /> is any function conformally mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827052.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827053.png" />. A hyperbolic circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827054.png" /> is, as in the case of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827055.png" />, a set of points in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827056.png" /> whose hyperbolic distance from a given point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827057.png" /> (the hyperbolic centre) does not exceed a given positive number (the hyperbolic radius). If the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827058.png" /> is multiply connected, a hyperbolic circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827059.png" /> is usually a multiply-connected domain. The hyperbolic area of a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827060.png" /> lying in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827061.png" /> is found by the formula
+
where $  \zeta ( z) $
 +
is any function conformally mapping $  D $
 +
onto $  E $.  
 +
A hyperbolic circle in $  D $
 +
is, as in the case of the disc $  E $,  
 +
a set of points in $  D $
 +
whose hyperbolic distance from a given point of $  D $(
 +
the hyperbolic centre) does not exceed a given positive number (the hyperbolic radius). If the domain $  D $
 +
is multiply connected, a hyperbolic circle in $  D $
 +
is usually a multiply-connected domain. The hyperbolic area of a domain $  B $
 +
lying in $  D $
 +
is found by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827062.png" /></td> </tr></table>
+
$$
 +
\Delta _ {D} ( B)  = \
 +
{\int\limits \int\limits } _ { B }
 +
\rho _ {D}  ^ {2} ( z)  dx  dy.
 +
$$
  
The quantities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827065.png" /> are invariant under conformal mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827066.png" /> (one of the main properties of the hyperbolic metric in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827067.png" />).
+
The quantities $  \mu _ {D} ( L) $,
 +
$  r _ {D} ( z _ {1} , z _ {2} ) $
 +
and $  \Delta _ {D} ( B) $
 +
are invariant under conformal mappings of $  D $(
 +
one of the main properties of the hyperbolic metric in $  D $).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Stoilov,  "The theory of functions of a complex variable" , '''1–2''' , Moscow  (1962)  (In Russian; translated from Rumanian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.M. Goluzin,  "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc.  (1969)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Stoilov,  "The theory of functions of a complex variable" , '''1–2''' , Moscow  (1962)  (In Russian; translated from Rumanian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Generalizations to higher-dimensional domains (mainly strongly pseudo-convex domains) are, e.g., the Carathéodory metric, the Kobayashi metric and the Bergman metric (for the latter see [[Bergman kernel function|Bergman kernel function]]).
 
Generalizations to higher-dimensional domains (mainly strongly pseudo-convex domains) are, e.g., the Carathéodory metric, the Kobayashi metric and the Bergman metric (for the latter see [[Bergman kernel function|Bergman kernel function]]).
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827068.png" /> be a domain, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827069.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827070.png" />. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827071.png" /> the set of holomorphic mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827073.png" /> the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827074.png" />. Then the (infinitesimal version of the) Carathéodory metric is
+
Let $  \Omega \subset  \mathbf C  ^ {n} $
 +
be a domain, $  z \in \Omega $
 +
and $  \xi \in \mathbf C  ^ {n} $.  
 +
Denote by $  B ( \Omega ) $
 +
the set of holomorphic mappings $  f : \Omega \rightarrow B $,  
 +
$  B $
 +
the unit ball in $  \mathbf C  ^ {n} $.  
 +
Then the (infinitesimal version of the) Carathéodory metric is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827075.png" /></td> </tr></table>
+
$$
 +
F _ {C} ( z, \xi )  = \
 +
\sup _ {\begin{array}{c}
 +
f \in B ( \Omega ) \\
 +
f( z) = 0  
 +
\end{array}
 +
} \
 +
\left | \sum _ { j= } 1 ^ { n } 
 +
\frac{\partial  f }{\partial  z _ {j} }
 +
( z) \cdot \xi _ {j} \right | ,
 +
$$
  
 
and the (infinitesimal version of the) Kobayashi distance is
 
and the (infinitesimal version of the) Kobayashi distance is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827076.png" /></td> </tr></table>
+
$$
 +
F _ {K} ( z, \xi )  =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827077.png" /></td> </tr></table>
+
$$
 +
= \
 +
\inf  \{ \alpha : \alpha > 0 \textrm{ and 
 +
there  is  a  holomorphic  mapping  } \
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827078.png" /></td> </tr></table>
+
$$
 +
 +
{} f : B \rightarrow \Omega  \textrm{ with }  f( z)= 0, ( f ^
 +
{ \prime } ( 0) ) ( 1 , 0 \dots 0) = \xi / \alpha \} .
 +
$$
  
Instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h048/h048270/h04827079.png" /> sometimes other domains (e.g. the unit polydisc) are taken. (See [[#References|[a2]]], [[#References|[a3]]].)
+
Instead of $  B $
 +
sometimes other domains (e.g. the unit polydisc) are taken. (See [[#References|[a2]]], [[#References|[a3]]].)
  
 
One correspondingly defines for these metrics distance and area.
 
One correspondingly defines for these metrics distance and area.

Revision as of 22:11, 5 June 2020


hyperbolic measure

A metric in a domain of the complex plane with at least three boundary points that is invariant under automorphisms of this domain.

The hyperbolic metric in the disc $ E = \{ {z } : {| z | < 1 } \} $ is defined by the line element

$$ d \sigma _ {z} = \ \frac{| dz | }{1 - | z | ^ {2} } , $$

where $ | dz | $ is the line element of Euclidean length. The introduction of the hyperbolic metric in $ E $ leads to a model of Lobachevskii geometry. In this model the role of straight lines is played by Euclidean circles orthogonal to $ | z | = 1 $ and lying in $ E $; the circle $ | z | = 1 $ plays the role of the improper point. Fractional-linear transformations of $ E $ onto itself serve as the motions in it. The hyperbolic length of a curve $ L $ lying inside $ E $ is defined by the formula

$$ \mu _ {E} ( L) = \ \int\limits _ { L } \frac{| dz | }{1 - | z | ^ {2} } . $$

The hyperbolic distance between two points $ z _ {1} $ and $ z _ {2} $ of $ E $ is

$$ r _ {E} ( z _ {1} , z _ {2} ) = \ { \frac{1}{2} } \mathop{\rm ln} \ \frac{| 1 - z _ {1} \overline{ {z _ {2} }}\; | + | z _ {1} - z _ {2} | }{| 1 - z _ {1} \overline{ {z _ {2} }}\; | - | z _ {1} - z _ {2} | } . $$

The set of points of $ E $ whose hyperbolic distance from $ z _ {0} $, $ z _ {0} \in E $, does not exceed a given number $ R $, $ R > 0 $, i.e. the hyperbolic disc in $ E $ with hyperbolic centre at $ z _ {0} $ and hyperbolic radius $ R $, is a Euclidean disc with centre other than $ z _ {0} $ if $ z _ {0} \neq 0 $.

The hyperbolic area of a domain $ B $ lying in $ E $ is defined by the formula

$$ \Delta _ {E} ( B) = \ {\int\limits \int\limits } _ { B } \frac{dx dy }{( 1 - | z | ^ {2} ) ^ {2} } ,\ \ z = x + iy. $$

The quantities $ \mu _ {E} ( L) $, $ r _ {E} ( z _ {1} , z _ {2} ) $ and $ \Delta _ {E} ( B) $ are invariant with respect to fractional-linear transformations of $ E $ onto itself.

The hyperbolic metric in any domain $ D $ of the $ z $- plane with at least three boundary points is defined as the pre-image of the hyperbolic metric in $ E $ under the conformal mapping $ \zeta = \zeta ( z) $ of $ D $ onto $ E $; its line element is defined by the formula

$$ d \sigma _ {z} = \ \frac{| \zeta ^ \prime ( z) | | dz | }{1 - | \zeta ( z) | ^ {2} } . $$

A domain with at most two boundary points can no longer be conformally mapped onto a disc. The quantity

$$ \rho _ {D} ( z) = \ \frac{| \zeta ^ \prime ( z) | }{1 - | \zeta ( z) | ^ {2} } $$

is called the density of the hyperbolic metric of $ D $. The hyperbolic metric of a domain $ D $ does not depend on the selection of the mapping function or of its branch, and is completely determined by $ D $. The hyperbolic length of a curve $ L $ located in $ D $ is found by the formula

$$ \mu _ {D} ( L) = \ \int\limits _ { L } \rho _ {D} ( z) | dz | . $$

The hyperbolic distance between two points $ z _ {1} $ and $ z _ {2} $ in a domain $ D $ is

$$ r _ {D} ( z _ {1} , z _ {2} ) = { \frac{1}{2} } \mathop{\rm ln} \ \frac{| 1 - \zeta ( z _ {1} ) \overline{ {\zeta ( z _ {2} ) }}\; | + | \zeta ( z _ {1} ) - \zeta ( z _ {2} ) | }{| 1 - \zeta ( z _ {1} ) \overline{ {\zeta ( z _ {2} ) }}\; | - | \zeta ( z _ {1} ) - \zeta ( z _ {2} ) | } , $$

where $ \zeta ( z) $ is any function conformally mapping $ D $ onto $ E $. A hyperbolic circle in $ D $ is, as in the case of the disc $ E $, a set of points in $ D $ whose hyperbolic distance from a given point of $ D $( the hyperbolic centre) does not exceed a given positive number (the hyperbolic radius). If the domain $ D $ is multiply connected, a hyperbolic circle in $ D $ is usually a multiply-connected domain. The hyperbolic area of a domain $ B $ lying in $ D $ is found by the formula

$$ \Delta _ {D} ( B) = \ {\int\limits \int\limits } _ { B } \rho _ {D} ^ {2} ( z) dx dy. $$

The quantities $ \mu _ {D} ( L) $, $ r _ {D} ( z _ {1} , z _ {2} ) $ and $ \Delta _ {D} ( B) $ are invariant under conformal mappings of $ D $( one of the main properties of the hyperbolic metric in $ D $).

References

[1] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
[2] S. Stoilov, "The theory of functions of a complex variable" , 1–2 , Moscow (1962) (In Russian; translated from Rumanian)

Comments

Generalizations to higher-dimensional domains (mainly strongly pseudo-convex domains) are, e.g., the Carathéodory metric, the Kobayashi metric and the Bergman metric (for the latter see Bergman kernel function).

Let $ \Omega \subset \mathbf C ^ {n} $ be a domain, $ z \in \Omega $ and $ \xi \in \mathbf C ^ {n} $. Denote by $ B ( \Omega ) $ the set of holomorphic mappings $ f : \Omega \rightarrow B $, $ B $ the unit ball in $ \mathbf C ^ {n} $. Then the (infinitesimal version of the) Carathéodory metric is

$$ F _ {C} ( z, \xi ) = \ \sup _ {\begin{array}{c} f \in B ( \Omega ) \\ f( z) = 0 \end{array} } \ \left | \sum _ { j= } 1 ^ { n } \frac{\partial f }{\partial z _ {j} } ( z) \cdot \xi _ {j} \right | , $$

and the (infinitesimal version of the) Kobayashi distance is

$$ F _ {K} ( z, \xi ) = $$

$$ = \ \inf \{ \alpha : \alpha > 0 \textrm{ and there is a holomorphic mapping } \ $$

$$ {} f : B \rightarrow \Omega \textrm{ with } f( z)= 0, ( f ^ { \prime } ( 0) ) ( 1 , 0 \dots 0) = \xi / \alpha \} . $$

Instead of $ B $ sometimes other domains (e.g. the unit polydisc) are taken. (See [a2], [a3].)

One correspondingly defines for these metrics distance and area.

References

[a1] L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)
[a2] S. Lang, "Introduction to complex hyperbolic spaces" , Springer (1987)
[a3] S.G. Krantz, "Function theory of several complex variables" , Wiley (1982)
How to Cite This Entry:
Hyperbolic metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hyperbolic_metric&oldid=47287
This article was adapted from an original article by G.V. Kuz'mina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article